Lösung für Zuverlässigkeitstests von ElektrofahrzeugkomponentenIm Zuge der globalen Erwärmung und des allmählichen Ressourcenverbrauchs wird auch der Benzinverbrauch von Kraftfahrzeugen stark reduziert, Elektrofahrzeuge werden mit elektrischer Energie angetrieben, wodurch die Wärme des Verbrennungsmotors sowie die Kohlendioxid- und Abgasemissionen reduziert werden, um Energie zu sparen und den CO2-Ausstoß zu reduzieren und zu verbessern der Treibhauseffekt spielt eine große Rolle, Elektrofahrzeuge sind der Zukunftstrend im Straßenverkehr; In den letzten Jahren haben die fortgeschrittenen Länder der Welt aktiv Elektrofahrzeuge entwickelt. Da Tausende von Komponenten aus komplexen Produkten bestehen, ist ihre Zuverlässigkeit besonders wichtig. Eine Vielzahl rauer Umgebungen testen das elektronische System von Elektrofahrzeugen [Batteriezelle, Batteriesystem, Batteriemodul]. , Motor für Elektrofahrzeuge, Steuerung für Elektrofahrzeuge, Batteriemodul und Ladegerät ...], Hongzhan Technology hilft Ihnen bei der Suche nach Zuverlässigkeitstestlösungen für Teile von Elektrofahrzeugen und hofft, Kunden Referenzen liefern zu können.Erstens haben unterschiedliche Umgebungsbedingungen unterschiedliche Auswirkungen auf Teile und führen zu deren Ausfall. Daher müssen die Teile des Autos gemäß den relevanten Spezifikationen getestet werden, um internationale Anforderungen zu erfüllen und den ausländischen Markt zu erfüllen. Im Folgenden wird die Korrelation zwischen verschiedenen Umgebungsbedingungen dargestellt Bedingungen und Produktfehler:A. Hohe Temperaturen führen dazu, dass das Produkt altert, vergast, reißt, erweicht, schmilzt, sich ausdehnt und verdampft, was zu schlechter Isolierung, mechanischem Versagen und einem Anstieg der mechanischen Spannung führt. Niedrige Temperaturen führen zu Versprödung, Vereisung, Schrumpfung und Verfestigung des Produkts sowie zu einer Verringerung der mechanischen Festigkeit, was zu schlechter Isolierung, Rissbildung, mechanischem Versagen und Dichtungsversagen führt.B. Eine hohe relative Luftfeuchtigkeit führt zu einer schlechten Isolierung des Produkts, Rissbildung, mechanischem Versagen, Versagen der Dichtung und daraus resultierender schlechter Isolierung; Eine niedrige relative Luftfeuchtigkeit führt zu Austrocknung, Versprödung, verringerter mechanischer Festigkeit und führt zu Rissen und mechanischem Versagen;C. Niedriger Luftdruck führt zu Produktausdehnung, Verschlechterung der elektrischen Isolierung der Luft, wodurch Korona und Ozon entstehen, geringer Kühleffekt und führt zu mechanischem Versagen, Dichtungsversagen und Überhitzung;D. Korrosive Luft führt zu Produktkorrosion, Elektrolyse, Oberflächenverschlechterung, erhöhter Leitfähigkeit und erhöhtem Kontaktwiderstand, was zu erhöhtem Verschleiß, elektrischem Ausfall und mechanischem Ausfall führt.E. Schnelle Temperaturänderungen führen zu einer lokalen Überhitzung des Produkts, was zu rissiger Verformung und mechanischem Versagen führt.F. Beschleunigte Vibrationsschäden oder Stöße verursachen eine Ermüdungsresonanz bei mechanischer Beanspruchung des Produkts und führen zu einer Zunahme struktureller Schäden.Daher müssen Produkte die folgenden Klimatests bestehen, um die Zuverlässigkeit der Komponenten zu testen: Staubtest, Hochtemperaturtest, Temperatur- und Feuchtigkeitslagerungstest, Salz-/Trocken-/Warmrückgewinnungstest, Temperatur- und Feuchtigkeitszyklustest, Eintauchen/Durchsickern Test, Salzsprühtest, Tieftemperaturtest, Thermoschocktest, Heißluftalterungstest, Wetter- und Lichtbeständigkeitstest, Gaskorrosionstest, Feuerbeständigkeitstest, Schlamm- und Wassertest, Taukondensationstest, Zyklustest mit hohen variablen Temperaturen, Regen ( Wasserdichtigkeitstest usw.Im Folgenden sind die Testbedingungen für die Automobilelektronik aufgeführt:A. IC- und Innenbeleuchtung für Lokomotiven,Empfohlenes Modell: Vibration der umfassenden KammerB. Instrumententafel, Motorsteuerung, Bluetooth-Headset, Reifendrucksensor, GPS-Satellitenpositionierungssystem, Instrumentenhintergrundbeleuchtung, Innenbeleuchtung, Außenbeleuchtung, Kfz-Lithiumbatterie, Drucksensor, Motor und Steuerung, Kfz-DVR, Kabel, KunstharzEmpfohlenes Modell: Prüfkammer mit konstanter Temperatur und LuftfeuchtigkeitC. 8,4-Zoll-LCD-Bildschirm für AutosEmpfohlenes Modell: Thermospannungs-RekombinationsmaschineZweitens werden elektronische Automobilteile in drei Kategorien unterteilt, darunter ICs, diskrete Halbleiter und passive Komponenten, um sicherzustellen, dass diese elektronischen Automobilkomponenten den höchsten Standards der Automobilsicherheit entsprechen. Der Automotive Electronics Council (AEC) ist eine Reihe von Standards AEC-Q100 für aktive Teile (Mikrocontroller und integrierte Schaltkreise...) und AEC-Q200 für passive Komponenten, die die Produktqualität und Zuverlässigkeit festlegen, die für passive Komponenten erreicht werden müssen Teile. AEC-Q100 ist der von der AEC-Organisation formulierte Standard für Fahrzeugzuverlässigkeitstests, der für 3C- und IC-Hersteller einen wichtigen Einstieg in das internationale Automobilfabrikmodul darstellt und auch eine wichtige Technologie zur Verbesserung der Zuverlässigkeitsqualität taiwanesischer ICs darstellt. Darüber hinaus hat das internationale Automobilwerk den Sicherheitsstandard (ISO-26262) erfüllt. AEC-Q100 ist die Grundvoraussetzung zum Bestehen dieser Norm.1. Liste der Kfz-Elektronikteile für A.EC-Q100: Kfz-Einwegspeicher, Netzteil-Abwärtsregler, Kfz-Fotokoppler, dreiachsiger Beschleunigungssensor, Video-Jema-Gerät, Gleichrichter, Umgebungslichtsensor, nichtflüchtiger ferroelektrischer Speicher, Energieverwaltungs-IC, eingebetteter Flash-Speicher, DC/DC-Regler, Netzwerkkommunikationsgerät für Fahrzeuganzeigen, LCD-Treiber-IC, Differenzialverstärker mit Einzelstromversorgung, kapazitiver Näherungsschalter aus, LED-Treiber mit hoher Helligkeit, asynchroner Umschalter, 600-V-IC, GPS-IC, ADAS-Treiber Assistenzsystem-Chip, GNSS-Empfänger, GNSS-Frontend-Verstärker... B. Testbedingungen für Temperatur und Luftfeuchtigkeit: Temperaturzyklus, Leistungstemperaturzyklus, Lagerdauer bei hohen Temperaturen, Nutzungsdauer bei hohen Temperaturen, Ausfallrate bei vorzeitiger Lebensdauer;2. Liste der Kfz-Elektronikteile für A.AC-Q200: Kfz-Elektronikkomponenten (konform mit AEC-Q200), kommerzielle Elektronikkomponenten, Kraftübertragungskomponenten, Steuerungskomponenten, Komfortkomponenten, Kommunikationskomponenten, Audiokomponenten.B. Testbedingungen: Lagerung bei hohen Temperaturen, Lebensdauer bei hohen Temperaturen, Temperaturzyklus, Temperaturschock, Feuchtigkeitsbeständigkeit.
LED-AmpeltestLeuchtdiode, kurz LED, ist die Abkürzung für den englischen Namen Light Emitting Diode. Durch die Kombination von Elektronen und Löchern zur Freisetzung von Energielicht kann elektrische Energie effizient in Lichtenergie umgewandelt werden und hat in der Moderne ein breites Einsatzspektrum Gesellschaft, wie Beleuchtung, Flachbildschirme und medizinische Geräte. Mit dem kontinuierlichen Fortschritt der Technologie kann dieses elektronische Bauteil von Anfang an nur schwaches rotes Licht aussenden, um anderes monochromatisches Licht zu entwickeln. Es wurde häufig im sichtbaren Licht, Infrarot- und Ultraviolettlicht verwendet und wird häufig in Anzeigetafeln und Anzeigetafeln verwendet dann auf Ampeln ausgeweitet. Es ist als neue Lichtquelle im 21. Jahrhundert bekannt, mit hoher Effizienz, langer Lebensdauer, umweltfreundlichem Material und relativer Stabilität, wobei die Vorteile herkömmlicher Lichtquellen nicht vergleichbar sind.Der Verkehr auf dem Zebrastreifen ist jeden Tag stark, wie aus den Verkehrsregeln hervorgeht. Auch die Ampel arbeitet jeden Tag hart, da sie das ganze Jahr über im Freien aufgestellt ist und daher den strengen Zuverlässigkeitstest bestehen muss, bevor sie funktionieren kann . Zu den Testbedingungen gehören: elektrische Spannung, Ausfallschutz, elektromagnetisches Rauschen, Staub- und Wasserdichtigkeit, Hochtemperaturtest, Vibrationstest, Salzsprühtest, Isolationsspannung, Isolationswiderstandstest ... Hinweis: Vor weiteren Tests müssen LED-Ampeln Trockenhitzetests unterzogen werden, bevor andere Tests durchgeführt werden können.Lampenoberflächentest: Trockenhitzetest: 60℃/24 Stunden/angelegte SpannungFehlerbeurteilung: keine Verformung, Lockerung, AbfallTemperaturbeständigkeitstest: 70℃ (16 Stunden) → -15℃ (16 Stunden) → R.T., RAMP: ≦1℃/min, 2 Zyklen, StromversorgungTemperatur- und Feuchtigkeitstest: 40℃→RAMP:≦1℃/min→40℃/95 % (24 Stunden), eingeschaltetKontinuierlicher Schaltvorgang: 40℃/60~80 %, EIN (1 Sek.)←→AUS (1 Sek.), 10000 MalSpannung elektrisch: 80 ~ 135 V (AC), 170 ~ 270 V (AC)Fehlerbeurteilung: Lichtintensitätsdrift ≦20 % (110 V, 220 V Lichtintensität als Benchmark)Wasserdicht und staubdicht erfüllen die Anforderungen der Klasse IP54Isolationswiderstandsprüfung:Isolationswiderstand: 500 VFehlerbestimmung: nicht weniger als 2 MΩIsolationsspannungstest: 1000 V/60 Hz/1 Minute (nach Isolationswiderstandstest)Lichtkammertest:Hochtemperaturtest: 130℃/1 StundeFehlerbeurteilung: keine Verformung, Lockerung, Abfall, Rissbildung usw.Vibrationstest: XYZ-Dreiwege, jeweils 12 Minuten für 36 Minuten, 10 ~ 35 ~ 10 Hz Sinuswelle, jeder Zyklus für 3 Minuten, Gesamtvibration von 2 mmFehlerbeurteilung: Keine Verformung, Lockerung, Abfall, Rissbildung, und die LED-Lichtoberfläche kann normal beleuchtet und betrieben werdenWindkanaltest: Windgeschwindigkeit 16 (51,5–56,4 m/s), vorwärts (0 Grad) und seitlich (45 Grad), jeweils 2 Stunden langFehlerbeurteilung: keine Verformung, Lockerung, Abfall, RissbildungSalzsprühtest: 96 StundenFehlerbestimmung: Weniger als 8 Stickpunkte auf einer Fläche von 10.000 mm^2, Oberflächenisolationswiderstand der LED-Signalleuchte >2 MΩ, Spannung 1000 V/1 Minute, keine Anomalie Empfohlenes Modell 1: Testkammer für hohe Temperaturen und hohe LuftfeuchtigkeitDie Prüfkammer für hohe Temperaturen und hohe Luftfeuchtigkeit eignet sich für elektrische, elektronische Geräte, Instrumente und andere Produkte, Teile und Materialien in wechselnden feuchten und heißen Umgebungen mit hohen und niedrigen Temperaturen, Lagerung, Transport, Prüfung der Einsatzanpassungsfähigkeit; Es handelt sich um ein Zuverlässigkeitstestgerät für alle Arten von elektronischen, elektrischen, elektrischen, Kunststoff- und anderen Rohstoffen und Geräten zur Durchführung von Tests zur Kältebeständigkeit, Hitzebeständigkeit, Nassbeständigkeit, Trockenbeständigkeit und Qualitätskontrolltechnik. Besonders geeignet für Glasfaser-, LCD-, Kristall-, Induktivitäts-, Leiterplatten-, Batterie-, Computer-, Mobiltelefon- und andere Produkte mit hoher Temperaturbeständigkeit, niedriger Temperaturbeständigkeit und Feuchtigkeitsbeständigkeitszyklustest. Empfohlenes Modell 2: Vibration der GesamtkammerVibration der umfassenden Kammer kombiniert mit Temperatur, Luftfeuchtigkeit und Vibrationsfunktion in einem, geeignet für Luft- und Raumfahrtprodukte, informationselektronische Instrumente, Materialien, elektrische, elektronische Produkte und alle Arten elektronischer Komponenten in einer umfassenden rauen Umgebung, um ihre Leistungsindikatoren zu testen. Vibration der umfassenden Kammer, hauptsächlich für Luft- und Raumfahrt-, Luftfahrt-, Erdöl-, Chemie-, Elektronik-, Kommunikations- und andere wissenschaftliche Forschungs- und Produktionseinheiten, um eine Temperatur- und Feuchtigkeitsänderungsumgebung bereitzustellen, gleichzeitig wird in der Testkammer eine elektrische Vibrationsbelastung gemäß den angegebenen Bedingungen erzeugt Zeitraum des Tests auf dem Test, für den Benutzer der gesamten Maschine (oder Komponenten), Elektrogeräte, Instrumente, Materialien für Temperatur und Luftfeuchtigkeit, umfassende Vibrations-Stress-Screening-Test. Um die Anpassungsfähigkeit des Testprodukts zu beurteilen oder das Verhalten des Testprodukts zu bewerten. Verglichen mit der Auswirkung eines einzelnen Faktors kann es die Anpassungsfähigkeit elektrischer und elektronischer Produkte an komplexe Umgebungsveränderungen bei Temperatur, Feuchtigkeit und Vibration beim Transport und bei der tatsächlichen Verwendung besser widerspiegeln und Produktfehler aufdecken, was ein wesentliches und wichtiges Testmittel für ist Der gesamte Prozess der Entwicklung neuer Produkte, des Prototypentests und des Produktqualifizierungstests. Empfohlenes Modell 3: SalzsprühtestkammerDie Salzsprühtestkammer eignet sich für alle Arten von Kommunikationselektronikprodukten, elektronischen Geräten und Hardwareteilen, um neutrale Salzsprühtests (NSS) und Korrosionstests (AASS, CASS) gemäß CNS, ASTM, JIS, ISO und anderen Standards durchzuführen . Mit dem Salzsprühtest wird die Korrosionsbeständigkeit der Produkte auf der Oberfläche verschiedener Materialien nach einer Korrosionsschutzbehandlung wie Beschichten, Galvanisieren, anodischer Behandlung und Rostschutzöl getestet.Empfohlenes Modell 4: wasser- und staubdichte PrüfkammerDie wasser- und staubdichte Prüfkammer eignet sich für Außenterminals wie Messautomatisierungsterminals und Verteilernetzwerk-Automatisierungsterminals zur Durchführung von Regen- und Staubtests, um sicherzustellen, dass die getesteten Produkte den Auswirkungen rauer Umweltveränderungen standhalten, sodass die Produkte sicher und sicher betrieben werden können zuverlässig und eignen sich für externe Beleuchtungs- und Signalgeräte sowie für den Schutz von Kfz-Lampengehäusen. Es kann verschiedene Umgebungen wie Wasser-, Sprüh- und Staubtests realistisch simulieren, denen elektronische Produkte und ihre Komponenten während des Transports und der Verwendung ausgesetzt sein können. Um die wasser- und staubdichte Leistung verschiedener Produkte zu ermitteln.
Produkteigenschaften des VakuumofensDer Vakuumofen kann bei niedrigerer Temperatur eine höhere Trocknungsrate erreichen und die Wärmeausnutzung ist voll, was vor allem für die Trocknung wärmeempfindlicher Materialien und Materialien, die Kondensatoren und zurückzugewinnende Lösungsmittel enthalten, geeignet ist. Es kann vor dem Trocknen behandelt werden und beim Trocknen können keine Rückstände vermischt werden. Der Trockner ist ein statischer Vakuumtrockner, sodass die Bildung trockener Materialien nicht beeinträchtigt wird. Es gibt viele Ernährungsmethoden: Dampf, Heißwasser, Thermoöl und elektrische Heizung.Vakuumöfen sind für die Trocknung wärmeempfindlicher, leicht zersetzbarer und leicht oxidierbarer Stoffe konzipiert und können insbesondere bei einigen komplexen Gegenständen mit Inertgasen gefüllt werden.Das Produkt verfügt über folgende Eigenschaften:1, Kammerstruktur: Kammer nimmt integrale Struktur an;2, Schalenmaterial: hochwertiges elektrostatisches Spray aus kaltgewalztem Stahl; Innenwandmaterial: Edelstahlplatte;3, Isoliermaterial: ultrafeine Glasfaser;4, die Türdichtung: Umweltschutz-Silikonkautschukstreifen. Der Verschluss und die Dichtheit der Box können angepasst werden, und der Türdichtungsring aus Silikonkautschuk ist als Ganzes geformt, um ein hohes Vakuum im Inneren der Box zu gewährleisten.5, das Studio besteht aus Edelstahlplatte (oder Drahtziehplatte), um sicherzustellen, dass das Produkt langlebig ist.6, Lagerung, Erhitzen, Testen und Trocknen erfolgen in einer Umgebung ohne Sauerstoff oder voller Inertgase, sodass es zu keiner Oxidation kommt.7, die kürzeste Aufheizzeit, verglichen mit der herkömmlichen Trockenofen-Aufheizzeit um mehr als 50 % reduziert. Da der Vakuumofen durch Elektrizität mit Wärmeenergie versorgt wird und die nassen Gegenstände leitfähig sind, ist es ratsam, bei der Verwendung darauf zu achten, dass keine Lecks entstehen. Daher sollte der allgemeine Ofen zur Gewährleistung der Sicherheit geerdet werden. Wenn kein Erdungskabel vorhanden ist, muss sichergestellt werden, dass im Ofen kein Stromleck vorhanden ist. Liegt keine Leckage vor, kann das Gerät mit Vorsicht verwendet werden. Liegt immer noch eine Leckage vor, sollte das Gerät sofort gestoppt werden.Der Vakuumofen ist zum Trocknen wärmeempfindlicher, leicht zersetzbarer und leicht oxidierbarer Substanzen konzipiert, kann mit Inertgas gefüllt werden (optional), insbesondere einige komplexe Bestandteile der Artikel können auch schnell trocknend sein, geeignet für Industrie- und Bergbauunternehmen, medizinische Fakultäten, Wissenschaftliche Forschungseinheiten unter Vakuumbedingungen für die Trocknungswärmebehandlung.
Testbedingungen für die Zuverlässigkeit von SmartwatchesIn der heutigen Gesellschaft besitzen Grundschüler und sogar Kindergartenkinder eine Smartwatch. Was ist also eine Smartwatch? In der Spätphase der Werbung für Sportuhren aufgrund des schnellen Aufschwungs von Smartphones hat der Smart Table nicht die Absicht, den gleichen PIM-Effekt wie PDAs und Smartphones zu bieten, und appelliert an das Smartphone-Agent-Assistentenzubehör, ähnlich wie Bluetooth-Kopfhörer Sprachhilfen von Smartphones, Smart Tables werden zu Informations- und Datenhilfen und ermöglichen eine bequemere und schnellere Anzeige und Bedienung von Informationen. Es gibt auch andere Namen wie Smart Accessoire und Android Remote. Als Mobiltelefonassistent positioniert, besteht die Idee darin, dass „der Grund, warum die Taschenuhr ausgestorben ist, darin besteht, dass man einfach auf die Zeit schaut, aber auch die Tasche herausnimmt, etwa 2-3 Sekunden, aber die Uhr ist weniger als.“ 1 Sekunde, was praktischer ist als die Taschenuhr. Und nach der Beobachtung holt jetzt jeder ein Smartphone heraus und klappt es auf, nur um die Nachricht zu bestätigen, so dass etwa Dutzende Male diese Bestätigung nicht einmal eingetippt werden muss, und eine Antwort ist nicht erforderlich, wenn sich die Dutzende Bestätigungen auf der Uhr geändert haben, müssen Sie dies nicht immer tun Sie müssen den Maschinenschieber entriegeln, da dies genauso zeitaufwändig ist wie eine Taschenuhr. Nachdem Sie also zum Assistenten des Mobiltelefons und der Fernbedienung geworden sind, ist die Uhr außer der Zeitanzeige nutzlos, wenn Sie das Mobiltelefon nicht zum Ausgehen mitnehmen, und das Bluetooth-Headset ohne Mobiltelefon ist fast Schrott .Kombiniert mit einem Smart-Armband, um sich besser zu verkaufen!!Smartwatches von „kleiner als der PDA-unabhängige Computer“ bis „Smartphone-Fernbedienungs-AIDS“ scheinen eine erfolgreichere Positionierung gewesen zu sein, aber diese CES 2014 kann gesehen werden, kombiniert mit intelligenter Armbandpositionierung ist sie besser. Das intelligente Armband nutzt Beschleunigungssensoren (und Gyroskope, magnetoresistive Sensoren usw.), um die Laufgeschwindigkeit, die Schrittzahl usw. des Benutzers zu erfassen, und kann sogar Tiefschlaf erkennen und Vorschläge für Bewegung und Schlaf machen. Wenn das Armband zum Display hinzugefügt wird, können Uhrzeit und Informationen auf dem Mobiltelefon angezeigt werden. Appell an Mobiltelefoninformationen: Wenn kein dringender Informationsbedarf besteht, wird tatsächlich nur ein ähnliches Bluetooth-Headset als Option angesehen (Kurier-, Fahrerbedarf). Wenn jeder die Informationszugriffsgeschwindigkeit des Gleitens akzeptieren kann, dann wird der Markt dies tun begrenzt sein. Allerdings ist neben der Aufforderung zur Überwachung von Trainings- und Schlafaufzeichnungen und der Betonung von Informationstipps anstelle der Betonung der Fernbedienung der Uhr auf dem Mobiltelefon ein kleiner oder fast kein Verzicht für den Endbenutzer gleichbedeutend, aber Es bringt einen unmittelbaren und neuen Anwendungswert (Sport, Schlafunterstützung), anstatt den Wirksamkeitswert des Mobiltelefons vollständig zu wiederholen, was den Markterfolg der Smartwatch weiter steigert. Nach ständiger Anpassung der Wirksamkeit, Anwendung und Positionierung sowie der Integration mit dem Smart Ring glauben wir, dass wir einen größeren Markt als in der Vergangenheit erreichen können. Smartwatch für Personen und Funktionen:1. Smartwatches für ErwachseneFunktionen: Bluetooth-synchrone Mobiltelefonanrufe, Senden und Empfangen von Textnachrichten, Überwachung des Schlafes, Überwachung der Herzfrequenz, Sitzerinnerung, Laufen, Fernfotografie, Musikwiedergabe, Video, Kompass und andere Funktionen, konzipiert für Modetrend-Menschen!2, Smartwatch für ältere MenschenFunktionen: hochpräzise GPS-Positionierung, Familienanrufe, Notrufe, Herzfrequenzüberwachung, sitzende Erinnerungen, Medikamentenerinnerungen und andere individuelle Funktionen für ältere Menschen, Bereitstellung eines Regenschirms für die Reise älterer Menschen, bringen Sie diese Uhr mit, weigern Sie sich, ältere Menschen zu verlieren!3, Kinder positionieren SmartwatchFunktionen: Mehrfachpositionierung, Zwei-Wege-Anruf, SOS SOS, Fernüberwachung, intelligenter Verlustschutz, historische Spur, elektronischer Zaun, Schrittzähler, Liebesbelohnung und andere Funktionen, um die Sicherheit von Kindern zu gewährleisten und Kindern eine gesunde und sichere Wachstumsumgebung zu bieten ! Smartwatch-Spezifikation:IEC 60086-3: UhrenbatterienISO 105-A02: Farbechtheitstest -A02 – Graustufenbewertung für VerfärbungenISO 105-A03-1993: Tests zur Farbechtheit -A03- Graustufenbewertung von FärbungenISO 764: Antimagnetische UhrenISO 1413: Stoßsichere UhrenISO 2281: Wasserdichte UhrenISO 11641-1993: Leder – Tests auf Farbechtheit – Farbechtheit gegenüber SchweißISO 14368-3: Schlagfestigkeitsprüfung von TischglasMIL 810G: Umwelttechnische Überlegungen und LabortestsQB/T 1897-1993: Inspektion wasserdichter UhrenQB/T 1898-1993: Inspektion stoßfester UhrenQB/T 1908-1993: Wichtiger ZuverlässigkeitstestQB/T 1919-2012: Typprüfung von digitalen Quarzuhren mit Zeigern und FlüssigkristallQB/T 2047-2007: Inspektion von Uhrenarmbändern aus MetallGB/T 2537-2001: Farbechtheitstest für Leder durch Hin- und Herschleifen der FarbechtheitQB/T 2540-2002: Inspektion von LederbändernGB/T 6048-1985: Digitale elektronische QuarzuhrGB/T 18761-2007: elektronische DigitalanzeigeGB/T 18828-2002: Standard für TaucheruhrenGB/T 22778-2008: Inspektion des Typs einer LCD-Digital-Quarz-StoppuhrGB/T 22780-2008: Typprüfung von LCD-QuarzuhrenGB/T 26716-2011 idt ISO 764-2002: Inspektion antimagnetischer UhrenHJ216-2005: Eco-Drive-Uhr Smartwatch-Pilotprojekt:Zuverlässigkeit, Genauigkeit der Zeitperiodenmessung, momentane Tagesdifferenz, Betriebstemperatur, Spannungsbereich, durchschnittlicher Temperaturkoeffizient, Spannungskoeffizient, Feuchtigkeitsbeständigkeit, Stoßfestigkeit, Wasserdichtigkeit, Batteriewechselzyklus, Schlüsselermüdungsbeständigkeit, Licht- und Wetterbeständigkeit, antistatische Leistung. Umgebungstemperatur Bereich: -25℃ ~ 55℃ Betriebstemperatur: -5 ~ 50℃/80% R.H. (Anforderungen: Jede Funktion und Flüssigkristallanzeige sollte vollständig und normal sein) Test der hohen und niedrigen Arbeitstemperatur: 50±1℃/24h→RT /1h→-5±1℃ Testbedingungen für Temperaturänderungen: (IEC60068-2) Hohe Temperatur: 30, 40, 55℃ Niedrige Temperatur: 5, -5, -10, -25℃ Nb-Verweilzeit (einschließlich Steig- und Abkühlzeit). ): 10 Min., 30 Min., 1 Stunde Nb-Temperaturvariabilität: 3 ± 0,6 ℃/Min., 5 ± 1 ℃/Min. Nasshitzetest:1,40 ± 1 ℃/85 ~ 95 % relative Luftfeuchtigkeit/24 Stunden2,8 ± 1 ℃/85 ~ 95 % relative Luftfeuchtigkeit/4 Std Feuchtigkeitstest im Lager:40℃/20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 %49℃/10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 %Jeder Schritt37 Stunden Simulationstest zur Temperaturänderung im Lufttransport:Spezifikation: IEC60721.2 Umgebungsbedingungen für die Anwendung elektrischer und elektronischer Produkte – nationale TransportnormKategorie: 2K5 (Gilt für den Klimabereich des unbelüfteten und drucklosen internen Transports weltweit)Temperaturbereich: -65℃←→85℃RAMPE: 5℃/min Simulationstest zur Temperaturänderung im Lufttransport:Spezifikation: IEC60721.6 Umgebungsbedingungen für die Anwendung elektrischer und elektronischer Produkte – MarineKategorie: 6K5 (abhängig von der Kälte, Einbau in wettergeschützte, aber unbeheizte Teile)Temperaturbereich: -25℃←→40℃RAMPE: 3℃/min Prüfung der Wassertemperaturänderungsbeständigkeit:5 Minuten in 40℃ Wasser → 5 Minuten in 20℃ Wasser, 5 Minuten in 40℃ Wasser, Wassertiefe 10 cm Wasserdruckbeständigkeitstest:Tauchen Sie die Uhr in einen Behälter mit Wasser, üben Sie innerhalb von 1 Minute einen Überdruck von 2*10^5 Pa [oder 20 m Wassertiefe] aus, halten Sie ihn 10 Minuten lang aufrecht und nach 1 Minute erreicht der Druck den Standarddruck der Umgebung Salzwasserbeständigkeitstest:Legen Sie die zu testende Uhr 24 Stunden lang in eine 30 g/l Natriumchloridlösung bei 18 °C bis 25 °C. Überprüfen Sie das Gehäuse und das Zubehör, nachdem der Test keine wesentlichen Veränderungen aufweisen sollte. Überprüfen Sie die beweglichen Teile, insbesondere der rotierende Frontring sollte in der Lage sein, die normale Funktion aufrechtzuerhalten Unterwasser-Zuverlässigkeitstest:Die zu testende Uhr wird in 30 cm ± 2 cm tiefes Wasser eingetaucht und 50 Stunden lang einer Temperatur von 18 °C bis 25 °C ausgesetzt. Alle mechanischen Geräte sollten weiterhin normal funktionieren. Während des Tests sollten mechanische Geräte, die im Wasser betrieben werden müssen, wie Zeitvoreinstellgeräte und Lichtschalter, normal funktionieren können; Führen Sie einen Kondensationstest durch. Auf der Innenfläche des Tischglases darf kein Kondensationsnebel auftreten und die mechanische Funktion darf nicht beschädigt werden Prüfung der Thermoschockbeständigkeit:Tauchen Sie die Uhr nacheinander in Wasser mit unterschiedlichen Temperaturen und einer Tiefe von 30 cm ± 2 cm: Legen Sie sie 10 Minuten lang in Wasser mit 40 ° C ± 2 ° C; 10 Minuten lang in 5℃±2℃ Wasser geben; Legen Sie die Uhr 10 Minuten lang in Wasser mit einer Temperatur von 40 °C ± 2 °C (die Uhr darf nicht aus dem Wasser genommen und erneut für mehr als 1 Minute in Wasser mit einer anderen Temperatur eingetaucht werden). Führen Sie einen Kondensationstest durch. Die Innenfläche des Tischglases darf keinen Kondensationsnebel aufweisen und sollte normal funktionieren. Chemikalienbeständigkeitstest:Zitierspezifikationen: ASTM F 1598-95, ASTM D 1308-87, ASTM D 1308-02Inhaltsstoffe: Haushaltschemikalien (Schmutz, Staub, Öl, Dämpfe und Erdnussbutter, Kosmetika, Handcreme usw.)Zeit: 24 Stunden Korrosionsbeständigkeit gegenüber künstlichem Schweißtest:QB/T 1901.2-2006 „Goldlegierungsabdeckungen des Gehäuses und seiner Zubehörteile – Teil 2 Prüfung auf Reinheit, Dicke, Korrosionsbeständigkeit und Haftung“Testprinzip: Der künstliche Schweiß wird verwendet, um das Objekt bei hoher Temperatur (40 ± 2) ℃ zu kontaktieren, und nach einer langen Zeit (mindestens 24 Stunden) wird der Zustand seiner Oberfläche beobachtet, um seine Beständigkeit gegen Schweißkorrosion zu bestimmen. Vibrationstest:Beschleunigung (19,6 m/s^2), Frequenz 30 Hz ~ 120 Hz, Scanzyklus 1 MinuteAnforderungen: Die Funktionen und das LCD-Display sollten vollständig und normal sein und die Teile sollten nicht locker sein und herunterfallen Falltest:1 m tiefes lithografisches Hartholz, einmal auf der Uhrenseite, einmal auf der Oberfläche aus GlasAnforderungen: Normale Funktion nach jedem Aufprall, kein äußerer Schaden [zerbrochenes Glas, Gehäusefuß verbogen, Gehäusekomponente verbogen, Gehäuse gebrochen, Knopf beschädigt] Schlagtest:Material des Aufprallkegels: Polytetrafluorethylen, Aufprallgeschwindigkeit 4,43 m/s, Aufprallhöhe 1 m Armschwungtest:2 bis 10 Hz
Arzneimittelstabilitätstest
Die Wirksamkeit und Sicherheit von Arzneimitteln haben große Aufmerksamkeit erregt, und es ist auch ein Lebensunterhaltsthema, dem das Land und die Regierung große Bedeutung beimessen. Die Stabilität von Arzneimitteln beeinflusst die Wirksamkeit und Sicherheit. Um die Qualität von Arzneimitteln und Lagerbehältern sicherzustellen, sollten Stabilitätstests durchgeführt werden, um deren Wirksamkeitszeit und Lagerzustand zu bestimmen. Der Stabilitätstest untersucht hauptsächlich, ob die Qualität von Arzneimitteln durch Umweltfaktoren wie Temperatur, Feuchtigkeit und Licht beeinflusst wird und ob sie sich mit der Zeit und der Korrelation zwischen ihnen ändert, und untersucht die Abbaukurve von Arzneimitteln, anhand derer die Wirksamkeitsdauer angenommen wird um die Wirksamkeit und Sicherheit von Arzneimitteln bei der Anwendung sicherzustellen. In diesem Artikel werden die für verschiedene Stabilitätstests erforderlichen Standardinformationen und Testmethoden als Referenz für Kunden zusammengestellt.
Erstens: Kriterien für den Arzneimittelstabilitätstest
Lagerbedingungen von Arzneimitteln:
Lagerbedingungen (Hinweis 2)
Langzeitexperiment
25℃±2℃ / 60%±5%RH oder
30℃±2℃ /65 % ± 5 % relative Luftfeuchtigkeit
Beschleunigter Test
40℃±2℃ / 75%±5%RH
Mittlerer Test (Anmerkung 1)
30℃±2℃ / 65%±5%RH
Hinweis 1: Wenn die Langzeittestbedingung auf 30℃±2℃/65 % ±5 % RH eingestellt wurde, gibt es keinen Mitteltest; Wenn die Langzeitlagerbedingungen 25 ℃ ± 2 ℃ / 60 % ± 5 % relative Luftfeuchtigkeit betragen und sich im beschleunigten Test eine signifikante Änderung ergibt, sollte ein mittlerer Test hinzugefügt werden. Und sollte anhand des Kriteriums „erhebliche Änderung“ beurteilt werden.
Hinweis 2: Versiegelte, undurchlässige Behälter wie Glasampullen können von Feuchtigkeitsbedingungen ausgenommen werden. Sofern nichts anderes bestimmt ist, sind alle Prüfungen entsprechend dem Stabilitätsprüfplan in der Zwischenprüfung durchzuführen.
Die beschleunigten Testdaten sollen sechs Monate lang verfügbar sein. Die Mindestdauer des Stabilitätstests beträgt 12 Monate für den Mitteltest und den Langzeittest.
Im Kühlschrank aufbewahren:
Lagerbedingungen
Langzeitexperiment
5℃±3℃
Beschleunigter Test
25℃±2℃ / 60%±5%RH
Im Gefrierschrank gelagert:
Lagerbedingungen
Langzeitexperiment
-20℃±5℃
Beschleunigter Test
5℃±3℃
Wenn das Produkt, das Wasser oder Lösungsmittel enthält, die einem Lösungsmittelverlust unterliegen können, in einem halbdurchlässigen Behälter verpackt ist, sollte die Stabilitätsbewertung über einen längeren Zeitraum bei niedriger relativer Luftfeuchtigkeit oder einem mittleren Test von 12 Monaten durchgeführt werden beschleunigter Test von 6 Monaten, um zu beweisen, dass das im semipermeablen Behälter befindliche Medikament der Umgebung mit niedriger relativer Luftfeuchtigkeit standhalten kann.
Enthält Wasser oder Lösungsmittel
Lagerbedingungen
Langzeitexperiment
25℃±2℃ / 40%±5%RH oder 30℃±2℃ /35 % ± 5 % relative Luftfeuchtigkeit
Beschleunigter Test
40℃±2℃;≤25%RH
Mittlerer Test (Anmerkung 1)
30℃±2℃ / 35%rF ±5%rF
Hinweis 1: Wenn die Langzeittestbedingung 30 ℃ ± 2 ℃ / 35 % ± 5 % relative Luftfeuchtigkeit beträgt, gibt es keinen Mitteltest.
Die Berechnung der relativen Wasserverlustrate bei einer konstanten Temperatur von 40℃ lautet wie folgt:
Ersetzte relative Luftfeuchtigkeit (A)
Kontrolle der relativen Luftfeuchtigkeit (R)
Verhältnis der Wasserverlustrate ([1-R]/[1-A])
60 % relative Luftfeuchtigkeit
25 % relative Luftfeuchtigkeit
1.9
60 % relative Luftfeuchtigkeit
40 % relative Luftfeuchtigkeit
1.5
65 % relative Luftfeuchtigkeit
35 % relative Luftfeuchtigkeit
1.9
75 % relative Luftfeuchtigkeit
25 % relative Luftfeuchtigkeit
3,0
Abbildung: Bei wässrigen Arzneimitteln in semipermeablen Behältern ist die Wasserverlustrate bei 25 % relativer Luftfeuchtigkeit dreimal so hoch wie bei 75 % relativer Luftfeuchtigkeit.
Zweitens: Lösungen zur Arzneimittelstabilität
Allgemeine Kriterien für Arzneimittelstabilitätstests
(Quelle: Food and Drug Administration, Ministerium für Gesundheit und Soziales)
Artikel
Lagerbedingungen
Langzeitexperiment
25 °C / 60 % relative Luftfeuchtigkeit
Beschleunigter Test
40 °C / 75 % relative Luftfeuchtigkeit
Mittlerer Test
30 °C/65 % relative Luftfeuchtigkeit
(1) Test mit großem Temperaturbereich
Artikel
Lagerbedingungen
Langzeitexperiment
Niedrige oder Minustemperaturbedingungen
Beschleunigter Test
Raumtemperatur und Luftfeuchtigkeit oder niedrige Temperaturbedingungen
(2) Testausrüstung
1. Prüfkammer für konstante Temperatur und Luftfeuchtigkeit
2. Prüfkammer für die Arzneimittelstabilität
SolarmodultestSolarenergie ist eine Art erneuerbare Energie und bezieht sich auf die Wärmestrahlungsenergie der Sonne. Die Hauptleistung wird oft als Sonnenstrahlung bezeichnet und in der modernen Welt im Allgemeinen zur Stromerzeugung oder zur Bereitstellung von Energie für Warmwasserbereiter verwendet. Angesichts der abnehmenden fossilen Brennstoffe ist Solarenergie zu einem wichtigen Bestandteil der menschlichen Energienutzung geworden und entwickelt sich weiter. Bei der Nutzung von Solarenergie gibt es zwei Arten der photothermischen Umwandlung: Die Erzeugung von Solarstrom ist eine aufstrebende erneuerbare Energie, weshalb auch die damit verbundene Forschungs- und Anwendungsindustrie für Solarenergie das Entwicklungstempo beschleunigt hat. Im Forschungs- und Produktionsprozess des Solarmoduls wurden die relevanten Spezifikationen für Zuverlässigkeitstests und Umwelttests formuliert, um sicherzustellen, dass das Solarmodul bei Verwendung im Freien eine Lebensdauer von mehr als 20 bis 30 Jahren und seine Umwandlungsrate bei der Stromerzeugung aufweist.Abbildung des Solarmodul-HAST- und PCT-TestsTemperatur- und Feuchtigkeitstest IEC61215-10-13:Die Temperatur- und Feuchtigkeitstestbedingungen sind 85℃/85 % relative Luftfeuchtigkeit, Zeit: 1000 Stunden, um die Fähigkeit des Moduls zu bestimmen, einer langfristigen Feuchtigkeitseindringung zu widerstehen. Durch den Temperatur- und Feuchtigkeitstest können folgende Mängel festgestellt werden: ZELL-Delamination, EVA (Delamination). , Verfärbung, Blasenbildung, Zerstäubung, Bräunung), Schwärzung der Leitungsstränge, TCO-Korrosion, Lötstellenkorrosion, Dünnschichtverfärbung, Entschleimung des Anschlusskastens ... Den Testergebnissen relevanter Solaranlagen zufolge sind es jedoch 1000 Stunden nicht genug, und die tatsächliche Situation zeigt, dass die Testzeit, damit das Modul das Problem finden kann, mindestens 3000 bis 5000 Stunden betragen muss. Testmethode des HAST [Highly Accelerated Temperature and Humidity Stress Test]:HAST ist die Abkürzung für Highly Accelerated Temperature and Humidity Stress Test auf Englisch. Das hochbeschleunigte Testverfahren zur Bewertung der Feuchtigkeitsbeständigkeit basiert auf den Umgebungsparametern Temperatur und Luftfeuchtigkeit. HAST und PCT [Schnellkochtopftest] unterscheiden sich von den beiden Tests. HAST wird als ungesättigter Test bezeichnet, während PCT ein Test mit gesättigter Luftfeuchtigkeit ist. Der größte Unterschied zur allgemeinen Testmethode zur Feuchtigkeitsbewertung besteht darin, dass sie sich auf den Bereich Temperatur und Luftfeuchtigkeit bezieht über 100℃ und befindet sich im Umgebungstest für Wasserdampf mit hoher Dichte. Der Zweck von HAST besteht darin, den Test des Eindringens von Feuchtigkeit in die Probe zur Bewertung der Feuchtigkeitsbeständigkeit zu beschleunigen, indem die Tatsache ausgenutzt wird, dass der Wasserdampfdruck im Testtank viel höher ist als der Wasserdampfpartialdruck innerhalb der Probe. Testspezifikationen und Bedingungen von JESD22-A118[Accelerated Moisture Resistance-Unbiased] (HAST unbiased test):Es wird verwendet, um die Zuverlässigkeit des Geräts in feuchter Umgebung zu bewerten, d. h. das Eindringen von rauer Temperatur, Feuchtigkeit und erhöhtem Wasserdampfdruck durch das äußere Schutzmaterial (Verkapselungs- oder Dichtungsmaterial) oder entlang der Grenzfläche des äußeren Schutzmaterials und Bei Verwendung eines Metallleiters ist der Ausfallmechanismus derselbe wie beim [85℃/85%RH]-Lebensdauertest bei hoher Temperatur und hoher Luftfeuchtigkeit im Dauerzustand (JESD22-A101-B). Bei diesem Testprozess wird kein Bias angewendet, um sicherzustellen, dass der Fehlermechanismus nicht durch Bias abgedeckt wird. Dieser Test wird verwendet, um den Fehlermechanismus im Paket zu bestimmen. Die Probe befindet sich in einer Umgebung mit nicht kondensierender Luftfeuchtigkeit, nur die Temperatur wird leicht erhöht, und der Fehlermechanismus ist der gleiche wie beim [85℃/85% RH]-Lebensdauertest im stationären Zustand bei hoher Temperatur und hoher Luftfeuchtigkeit ohne Voreingenommenheit. Es ist zu beachten, dass, da absorbierter Wasserdampf die Glasübergangstemperatur der meisten Polymermaterialien senkt, ein unrealistischer Fehlermodus auftreten kann, wenn die Temperatur höher als die Glasübergangstemperatur ist.85 ℃/85 %/1000 Std. (JESD22-A101) → 110 ℃/85 %/264 Std. (JESD22-A110, A118)Spezifikationen: JEDEC22-A110 (mit Vorspannung), JEDEC22-A118 (ohne Vorspannung)Allgemeine Bedingungen: 110 ℃/85 % relative Luftfeuchtigkeit/264 Std. Anwendbar: PET, EVA, ModuleTestmethode des PCT [Pressure Cooker Test]:Allgemein bekannt als Schnellkochtopf-Kochtest oder Sattdampftest. Der wichtigste Test besteht darin, das Produkt unter rauen Temperaturen, gesättigter Luftfeuchtigkeit (100 % r.F.) [gesättigter Wasserdampf] und Druckumgebung zu testen und die hohe Feuchtigkeitsbeständigkeit des Testprodukts zu testen , für Solarverpackungsmaterialien oder -module, verwendet für Materialfeuchtigkeitsabsorptionstests, Hochdruckkochen usw. Wenn es sich bei dem zu testenden Produkt um eine Zelle handelt, wird für den Zweck des Tests die Feuchtigkeitsbeständigkeit der Zelle getestet. Das zu testende Produkt wird zum Testen einer rauen Temperatur-, Feuchtigkeits- und Druckumgebung ausgesetzt. Wenn die Verpackung nicht gut verpackt ist, dringt Feuchtigkeit entlang des Kolloids oder der Grenzfläche zwischen dem Kolloid und dem Drahtrahmen in die Verpackung ein. Popcorn-Effekt, offener Stromkreis durch Korrosion von Metalldrähten, Kurzschluss durch Verunreinigung zwischen Gehäusestiften ... und andere damit zusammenhängende Probleme, und die beschleunigte Alterung von HAST ist nicht dasselbe. Testspezifikationen und Bedingungen von PCT JESD22-A102:Um die Integrität nicht luftdicht verpackter Geräte gegen Wasserdampf in einer kondensierten oder gesättigten Wasserdampfumgebung zu bewerten, wird die Probe in eine kondensierte Umgebung mit hoher Luftfeuchtigkeit und hohem Druck gebracht, damit Wasserdampf in die Verpackung eindringen und Schwachstellen in der Verpackung aufdecken kann Paket, wie Delaminierung und Korrosion der Metallisierungsschicht. Der Test wird verwendet, um die neue Verpackungsstruktur oder die Aktualisierung des Materials und Designs im Verpackungskörper zu bewerten. Es ist zu beachten, dass im Test einige interne oder externe Fehlermechanismen auftreten, die nicht mit der tatsächlichen Anwendungssituation übereinstimmen. Da absorbierter Wasserdampf die Glasübergangstemperatur der meisten Polymermaterialien senkt, kann ein unrealistischer Fehlermodus auftreten, wenn die Temperatur höher als die Glasübergangstemperatur ist. Testbedingungen: 121℃/100%R.H./80h(COVEME), 200h[toyalSolar]Anwendbar: PET, EVA, ModuleSchnellkochtöpfe (PCTS) und Highly Accelerated Life Test Equipment (HAST):Derzeit können die meisten Solarmaterialien und -module dem Langzeit-DHB-Test (Temperatur und Luftfeuchtigkeit + Vorspannung) ohne Fehler standhalten. Um die Testeffizienz zu verbessern und die Testzeit zu verkürzen, wird die Schnellkochtopf-Testmethode verwendet. Schnellkochtopf-Testmethoden werden hauptsächlich in zwei Typen unterteilt: PCT und HAST. Wenn die Mängel von Solarverpackungsmaterialien und -modulen durch HAST-Tests gefunden werden können und die Verschlechterung um 1 % reduziert werden kann, werden die LCOE[Levelized Cost of Strom (tatsächlicher Energieproduktionswert, Stromerzeugungskosten pro kWh)] wird um 10 % reduziert. Der Zweck des PCT-Tests besteht darin, die Umgebungsbelastung (Temperatur und Luftfeuchtigkeit) zu erhöhen und die Dichtwirkung des Moduls sowie die Feuchtigkeitsaufnahme der Rückwandplatine zu bewerten, indem sie einem Benetzungsdampfdruck von mehr als einer Atmosphäre ausgesetzt wird.
DünnschichtsolarzelleBei einer Dünnschichtsolarzelle handelt es sich um eine Art Solarzelle, die durch Dünnschichttechnologie hergestellt wird und die Vorteile geringer Kosten, geringer Dicke, geringes Gewicht, Flexibilität und Biegsamkeit bietet. Es besteht normalerweise aus Halbleitermaterialien wie Kupfer-Indium-Gallium-Selenid (CIGS), Cadmiumtellurid (CdTe), amorphem Silizium, Galliumarsenid (GaAs) usw. Diese Materialien weisen eine hohe photoelektrische Umwandlungseffizienz auf und können bei schlechten Lichtverhältnissen Strom erzeugen.Dünnschichtsolarzellen können aus kostengünstigem Glas, Kunststoff, Keramik, Graphit, Metallblech und anderen verschiedenen Materialien als Substrate hergestellt werden und bilden eine Filmdicke, die nur wenige Mikrometer Spannung erzeugen kann, sodass die Menge an Rohstoffen erheblich sein kann reduziert als Siliziumwafer-Solarzellen bei gleicher Lichtempfangsfläche (Dicke kann um mehr als 90 % geringer sein als bei Siliziumwafer-Solarzellen). Mit einem Umwandlungswirkungsgrad von bis zu 13 % eignen sich Dünnschichtsolarzellen derzeit nicht nur für flache Strukturen, sondern können aufgrund ihrer Flexibilität auch in nichtebene Strukturen umgewandelt werden, haben ein breites Anwendungsspektrum und sind kombinierbar Gebäude oder werden Teil des Gebäudekörpers.Anwendung des Dünnschichtsolarzellenprodukts:Lichtdurchlässige Solarzellenmodule: Gebäudeintegrierte Solarenergieanwendungen (BIPV)Anwendung von Dünnschicht-Solarenergie: tragbares, faltbares, wiederaufladbares Netzteil, Militär, ReisenAnwendungen von Dünnschicht-Solarmodulen: Dacheindeckung, Gebäudeintegration, Fernstromversorgung, VerteidigungMerkmale von Dünnschichtsolarzellen:1. Weniger Leistungsverlust bei gleicher Abschirmfläche (gute Stromerzeugung bei schwachem Licht)2. Der Leistungsverlust bei gleicher Beleuchtung ist geringer als bei Wafer-Solarzellen3. Besserer Leistungstemperaturkoeffizient4. Bessere Lichtdurchlässigkeit5. Hohe kumulative Stromerzeugung6. Es wird nur eine geringe Menge Silizium benötigt7. Es liegt kein internes Kurzschlussproblem vor (die Verbindung wurde bei der Serienfertigung der Batterie hergestellt).8. Dünner als Wafer-Solarzellen9. Die Materialversorgung ist gesichert10. Integrierte Nutzung mit Baustoffen (BIPV)Vergleich der Solarzellendicke:Kristallines Silizium (200 ~ 350 μm), amorpher Film (0,5 μm)Arten von Dünnschichtsolarzellen:Amorphes Silizium (a-Si), nanokristallines Silizium (nc-Si), mikrokristallines Silizium, mc-Si), Verbindungshalbleiter II-IV [CdS, CdTe (Cadmiumtellurid), CuInSe2], farbstoffsensibilisierte Solarzellen, organische/Polymer-Solarzellen Zellen, CIGS (Kupfer-Indium-Selenid) usw.Strukturdiagramm eines Dünnschicht-Solarmoduls:Das Dünnschicht-Solarmodul besteht aus einem Glassubstrat, einer Metallschicht, einer transparenten leitfähigen Schicht, einem elektrischen Funktionskasten, einem Klebematerial, einer Halbleiterschicht usw.Zuverlässigkeitstestspezifikation für Dünnschichtsolarzellen:IEC61646 (Teststandard für Dünnschicht-Solar-Fotoelektrikmodule), CNS15115 (Designvalidierung und Typgenehmigung für Dünnschicht-Silizium-Onshore-Solar-Fotoelektrikmodule)Temperatur- und Feuchtigkeitsprüfkammer von LaborbegleiterSerie von Temperatur- und Feuchtigkeitstestkammern, hat die CE-Zertifizierung bestanden und bietet 34L, 64L, 100L, 180L, 340L, 600L, 1000L, 1500L und andere Volumenmodelle an, um den Bedürfnissen verschiedener Kunden gerecht zu werden. Bei der Konstruktion werden umweltfreundliche Kältemittel und ein leistungsstarkes Kühlsystem verwendet. Teile und Komponenten werden von der international bekannten Marke verwendet.
Zuverlässigkeitstest für WärmerohreBei der Heatpipe-Technologie handelt es sich um ein von G.M. erfundenes Wärmeübertragungselement namens „Heatpipe“. Rover des Los Alamos National Laboratory im Jahr 1963, der das Prinzip der Wärmeleitung und die schnellen Wärmeübertragungseigenschaften des Kühlmediums voll ausnutzt und die Wärme des Heizobjekts über das Wärmerohr schnell an die Wärmequelle überträgt. Seine Wärmeleitfähigkeit übertrifft die jedes bekannten Metalls. Die Heatpipe-Technologie ist in der Luft- und Raumfahrt, im Militär und in anderen Branchen weit verbreitet, seit sie in der Kühlerherstellungsindustrie eingeführt wurde, was dazu führte, dass die Menschen die Designidee des traditionellen Kühlers änderten und den einzigen Wärmeableitungsmodus, auf den sie sich lediglich verlassen, abgeschafft haben Motor mit hohem Luftvolumen, um eine bessere Wärmeableitung zu erzielen. Durch den Einsatz der Heatpipe-Technologie kann der Kühler auch bei Verwendung eines Motors mit niedriger Drehzahl und geringem Luftvolumen zufriedenstellende Ergebnisse erzielen, sodass das durch die Luftkühlungswärme verursachte Geräuschproblem gut gelöst wurde und eine neue Welt in der Luftkühlung eröffnet wurde Wärmeableitungsindustrie.Testbedingungen für die Zuverlässigkeit von Wärmerohren:Hochtemperatur-Stresstest: 150℃/24 StundenTemperaturwechseltest:120℃(10min)←→-30℃(10min), Rampe: 0,5℃, 10 Zyklen 125℃(60min)←→-40℃(60min), Rampe: 2,75℃, 10 ZyklenThermoschocktest:120℃(2min)←→-30℃(2min), 250 Zyklen125℃(5min)←→-40℃(5min), 250 Zyklen100℃(5min)←→-50℃(5min), 2000 Zyklen (nach 200 Zyklen einmal prüfen)Test bei hoher Temperatur und hoher Luftfeuchtigkeit:85℃/85%R.H./1000 StundenBeschleunigter Alterungstest:110℃/85%RH/264hWeitere Heatpipe-Testgegenstände:Salzsprühtest, Festigkeitstest (Strahltest), Leckratentest, Vibrationstest, Zufallsvibrationstest, mechanischer Schocktest, Heliumverbrennungstest, Leistungstest, Windkanaltest
Testen von Multitouch-PanelsWenn sich der menschliche Körper in der Nähe des Touchpads befindet, ändert sich der Kapazitätswert zwischen dem Sensorpad und der Erde (allgemeiner Leistungsfaktor). Bei kapazitiven Touchpads (auch bekannt als: Oberflächenkapazitive) wird die Änderung des Kapazitätswerts mithilfe eines Sensors vom Mikroprozessor erfasst, Störungen gefiltert und schließlich festgestellt, ob sich ein menschlicher Körper in der Nähe befindet, um die Schlüsselfunktion zu erreichen. Im Vergleich zu herkömmlichen mechanischen Tasten besteht der Vorteil darin, dass keine mechanischen Beschädigungen auftreten und Nichtmetalle wie Glas, Acryl und Kunststoff als Isolierung des Bedienfelds verwendet werden können, wodurch das Erscheinungsbild des Produkts atmosphärischer wird. Im Gegensatz dazu kann es auch die Schiebebedienung realisieren, die mit herkömmlichen mechanischen Tasten nur schwer zu erreichen ist, sodass die Mensch-Maschine-Schnittstelle eher der intuitiven Bedienung des Menschen entspricht.Die äußerste Schicht des kapazitiven Touchpanels ist eine dünne Siliziumdioxid-Härtungsverarbeitungsschicht und ihre Härte erreicht 7; Die zweite Schicht ist ITO (leitende Beschichtung), durch die leitende Schicht auf der Vorderseite wird der durchschnittliche Niederspannungsleitungsstrom verteilt, um ein gleichmäßiges elektrisches Feld auf der Glasoberfläche aufzubauen, wenn der Finger die Oberfläche des Touchpanels berührt. Es absorbiert eine kleine Strommenge vom Kontaktpunkt, was zu einem Spannungsabfall an der Eckelektrode führt und den schwachen Strom des menschlichen Körpers erfasst, um den Zweck der Berührung zu erreichen. Die Funktion der unteren ITO-Schicht besteht darin, elektromagnetische Wellen abzuschirmen, sodass das Touchpanel in einer guten Umgebung ohne Störungen arbeiten kann. Während der projektiv-kapazitive Touch-Modus, der vom berühmten Apple iPhone und Windows 7 verwendet wird, Multi-Touch unterstützt, was die Lernzeit des Benutzers verkürzen kann, verwenden Sie einfach das Finger-Bauch-Touchpanel, um die Verwendung eines Stifts zu vermeiden , und hat eine höhere Lichtdurchlässigkeit und mehr Energieeinsparung, mehr Kratzfestigkeit als der Widerstandstyp (Härte bis zu 7H oder mehr), erhöht die Lebensdauer ohne Korrektur erheblich ... Die Touch-Technologie lässt sich nach dem Sensorprinzip in vier Arten einteilen: Resistive, kapazitive, akustische Oberflächenwellen und Optik. Und kapazitive Kapazitäten können auch in zwei Arten von Oberflächenkapazitivität und projizierter Kapazität unterteilt werden.Anwendungen der Touch-Technologie:Industrielle Anwendungen (automatische Bearbeitungsmaschinen, Messgeräte, zentrale Überwachung und Steuerung)Kommerzielle Anwendungen (Ticketsysteme, POS, Geldautomaten, Verkaufsautomaten, Guthabenautomaten)Lebensanwendungen (Mobiltelefone, Satellitenortung GPS, UMPC, kleiner Laptop)Bildung und Unterhaltung (E-Books, tragbare Spielekonsolen, Jukeboxen, elektronische Wörterbücher)Vergleich der Lichtdurchlässigkeitsrate des Touchpanels: ohmsch (85 %), kapazitiv (93 %)Testbedingungen für Multitouch-Panels:Betriebstemperaturbereich: -20℃~70℃/20%~85%RHLagertemperaturbereich: -50℃~85℃/10%~90%RHHochtemperaturtest: 70℃/240, 500 Stunden, 80℃/240, 1000 Stunden, 85℃/1000 Stunden, 100℃/240 StundenTieftemperaturtest: -20℃/240 Stunden, -40℃/240, 500 Stunden, -40℃/1000 StundenTest bei hoher Temperatur und hoher Luftfeuchtigkeit: 60℃/90%RH/240 Stunden, 60℃/95%RH/1000 Stunden, 70℃/80%RH/500 Stunden, 70℃/90%RH/240.500.1000 Stunden, 70℃/95%RH /500 Stunden 85℃/85 % RH/1000 Stunden, 85 ℃/90 % RH/1000 StundenKochtest: 100℃/100 % RH/100 MinutenTemperaturschock – hohe und niedrige Temperatur: (Der Temperaturschocktest ist nicht gleichbedeutend mit dem Temperaturwechseltest.)-30℃←→80℃, 500 Zyklen-40℃(30min)←→70(30min)℃, 10 Zyklen-40℃←→70℃, 50, 100 Zyklen-40℃(30min)←→110℃(30min), 100 Zyklen-40℃(30min)←→80℃(30min), 10, 100 Zyklen-40℃(30min)←→90℃(30min), 100 ZyklenThermoschocktest – Flüssigkeitstyp: -40℃←→90℃, 2 ZyklenKälte- und Thermoschocktest bei Raumtemperatur: -30℃(30min)→R.T. (5 Min.) → 80 ℃ (30 Min.), 20 ZyklenLebensdauer: 1.000.000 Mal, 2.000.000 Mal, 35.000.000 Mal, 225.000.000 Mal, 300.000.000 MalHärtetest: größer als Härtegrad 7 (ASTM D 3363, JIS 5400)Schlagtest: Schlagen Sie mit einer Kraft von mehr als 5 kg auf die am stärksten gefährdete Stelle bzw. in die Mitte der Platte.Pin(Tail)-Zugtest: 5 oder 10 kg nach unten ziehen.Pin-Falttest: 135°-Winkel, 10 Mal nach links und rechts hin und her.Schlagfestigkeitstest: 11 φ/5,5 g Kupferkugel, die aus 1,8 m Höhe auf die Mittelfläche eines 1 m hohen Objekts fällt, 3 ψ/9 g schwere Edelstahlkugel, die aus 30 cm Höhe fallen gelassen wird.Schreibbeständigkeit: 100.000 Zeichen oder mehr (Breite R0,8 mm, Druck 250 g)Berührungshaltbarkeit: 1.000.000, 10.000.000, 160.000.000, 200.000.000 Mal oder mehr (Breite R8 mm, Härte 60°, Druck 250 g, 2 Mal pro Sekunde)Prüfmittel:TestausrüstungTestanforderungen und -bedingungen Prüfkammer für Temperatur und LuftfeuchtigkeitAusstattungsmerkmale: hochfestes, hochzuverlässiges Strukturdesign – um die hohe Zuverlässigkeit der Ausrüstung zu gewährleisten; Arbeitsraummaterialien für den Edelstahl SUS304 – Korrosionsbeständigkeit, starke Anti-Ermüdungs-Thermofunktion, lange Lebensdauer; Isoliermaterialien aus hochdichtem Polyurethanschaum – um sicherzustellen, dass der Wärmeverlust auf ein wenig reduziert wird; die Oberfläche der Kunststoffspritzbehandlung – um sicherzustellen, dass die Ausrüstung dauerhaft korrosionsbeständig ist und das Aussehen des Lebens behält; Hochfester, temperaturbeständiger Dichtungsstreifen aus Silikonkautschuk – um eine hohe Abdichtung der Gerätetür zu gewährleisten. Prüfkammer für hohe Temperaturen und hohe LuftfeuchtigkeitTestkammerserien für hohe Temperaturen und hohe Luftfeuchtigkeit haben die CE-Zertifizierung bestanden und bieten Modelle mit 34 l, 64 l, 100 l, 180 l, 340 l, 600 l, 1000 l, 1500 l und anderen Volumen, um den Anforderungen verschiedener Kunden gerecht zu werden. Bei der Konstruktion werden umweltfreundliche Kältemittel und ein leistungsstarkes Kühlsystem verwendet. Teile und Komponenten werden von international bekannten Marken verwendet. Zweizonen (Korbtyp) Thermoschock-TestkammerAnwendbar für die Beurteilung von Produkten (der gesamten Maschine), Teilen und Komponenten usw., um schnellen Temperaturänderungen standzuhalten. Thermoschock-Testkammern können die Auswirkungen der Testprobe aufgrund von Temperaturänderungen einmal oder wiederholt nachvollziehen. Die wichtigsten Parameter, die den Temperaturwechseltest beeinflussen, sind die hohen und niedrigen Temperaturwerte des Temperaturwechselbereichs, die Verweilzeit der Probe bei hohen und niedrigen Temperaturen und die Anzahl der Testzyklen. Dreizonen (Belüftungstyp)Thermoschock-TestkammerDie Thermoschock-Testkammern der TS-Serie verfügen über vollständige Ausstattungsspezifikationen: Zwei Zonen (Korbtyp), Dreizonen (Belüftungstyp) und horizontale Bewegungsart stehen den Benutzern zur Auswahl und erfüllen die verschiedenen Anforderungen verschiedener Benutzer vollständig. Das Gerät kann auch Standardfunktionen für Hoch- und Niedertemperaturtests bereitstellen, um die Kompatibilität von Temperaturschocks und Hoch- und Niedertemperaturtests zu erreichen. Hohe Festigkeit, hohe Zuverlässigkeit des Strukturdesigns – gewährleisten die hohe Zuverlässigkeit der Ausrüstung.
UV-Alterungstester-TestgeräteDie Struktur der Testkammer besteht aus korrosionsbeständigen Metallmaterialien und umfasst acht fluoreszierende UV-Lampen, eine Wasserschale, einen Testprobenhalter sowie Temperatur- und Zeitkontrollsysteme und -indikatoren.2. Die Lampenleistung beträgt 40 W und die Lampenlänge beträgt 1200 mm. Der einheitliche Arbeitsbereich der Testbox beträgt 900 × 210 mm.3. Die Lichter sind in vier Reihen installiert, aufgeteilt in zwei Reihen. Die Röhren jeder Leuchtenreihe sind parallel montiert und der Achsabstand der Leuchten beträgt 70 mm.4. Die Testprobe wird fest an einer Position installiert, die 50 mm von der Oberfläche der Lampenoberfläche entfernt ist. Der Prüfling und seine Halterung bilden die Innenwand des Kastens und ihre Rückseiten sind aufgrund des Temperaturunterschieds zwischen dem Prüfling und der Luft im Inneren des Kastens Kühlluft bei Raumtemperatur ausgesetzt. Um während der Kondensationsphase stabile Kondensationsbedingungen auf der Oberfläche des Prüflings zu schaffen, sollte die Prüfkammer eine natürliche Luftkonvektion durch die Außenwand der Kammer und den Kanal des Prüflings am Boden erzeugen.5. Wasserdampf wird durch eine Wasserwanne erzeugt, die sich am Boden des Heizkastens befindet, deren Wassertiefe 25 mm nicht überschreitet und die mit einer automatischen Wasserversorgungssteuerung ausgestattet ist. Um Kalkablagerungen vorzubeugen, sollte die Wasserwanne regelmäßig gereinigt werden.6. Die Temperatur der Testkammer wird von einem Sensor gemessen, der auf einer schwarzen Aluminiumplatte (Tafel) mit einer Breite von 75 mm, einer Höhe von 100 mm und einer Dicke von 2,5 mm befestigt ist. Die Tafel sollte im zentralen Bereich des Expositionstests platziert werden und der Messbereich des Thermometers beträgt 30-80 ℃ mit einer Toleranz von ± 1 ℃. Die Steuerung der Beleuchtungs- und Kondensationsstufe sollte getrennt erfolgen, wobei die Kondensationsstufe über die Heizwassertemperatur gesteuert wird. 7. Die Prüfkammer sollte in einem Prüfraum mit einer Temperatur von 15–35 °C, 300 mm von der Wand entfernt, aufgestellt werden und den Einfluss anderer Wärmequellen verhindern. Die Luft im Prüfraum sollte nicht stark zirkulieren, um eine Beeinträchtigung der Licht- und Kondensationsbedingungen zu vermeiden.Lieber Kunde:Hallo, unser Unternehmen ist ein hochqualifiziertes Entwicklungsteam mit starker technischer Stärke, das unseren Kunden hochwertige Produkte, Komplettlösungen und exzellente technische Dienstleistungen bietet. Zu den Hauptprodukten gehören begehbare Prüfkammern für konstante Temperatur und Luftfeuchtigkeit, UV-Testmaschinen für beschleunigte Alterung, Prüfkammern für schnelle Temperaturwechsel, begehbare Umweltprüfkammern, UV-Alterungstester, Kammern mit konstanter Temperatur und Luftfeuchtigkeit usw. Unser Unternehmen folgt dem Grundsatz, ein Unternehmen mit Integrität aufzubauen, die Qualität aufrechtzuerhalten und nach Fortschritt zu streben. Mit einem entschlosseneren Tempo erklimmen wir kontinuierlich neue Höhen und leisten einen Beitrag zur nationalen Automatisierungsbranche. Wir begrüßen neue und alte Kunden, die selbstbewusst die Produkte auswählen, die ihnen gefallen. Wir werden Sie mit ganzem Herzen bedienen!
Zuverlässigkeitstest für FahrradlampenFahrräder stehen im gesellschaftlichen Umfeld von hohen Ölpreisen und Umweltschutz, mit Umweltschutz, Fitness, langsamem Leben ... Wie multifunktionale Freizeitsportgeräte und Fahrradlichter sind ein unverzichtbarer und wichtiger Bestandteil des nächtlichen Fahrradfahrens, wenn das Der Kauf von kostengünstigen und nicht auf Zuverlässigkeit getesteten Fahrradlichtern, das Fahren in der Nacht oder durch den Tunnelausfall stellt nicht nur für den Fahrer eine ernsthafte Gefahr für die Lebenssicherheit dar. Beim Autofahren kann es zu Kollisionsunfällen kommen, weil der Fahrer den Radfahrer nicht sehen kann Daher ist es wichtig, Fahrradlichter zu haben, die den Zuverlässigkeitstest bestehen.Gründe für den Ausfall einer Fahrradlampe:A. Verformung, Versprödung und Ausbleichen des Lampengehäuses durch hohe LampentemperaturB. Vergilbung und Versprödung des Lampengehäuses durch ultraviolette Strahlung im FreienC. Bergauf- und -abfahrten aufgrund hoher und niedriger Temperaturschwankungen in der Umgebung, die durch einen Lampenausfall verursacht werdenD. Anormaler Stromverbrauch von Autolichterne. Nach längerem Regen fallen die Lichter ausF. Ein Überhitzungsfehler tritt auf, wenn die Lichter über einen längeren Zeitraum leuchtenG. Während der Fahrt löst sich die Lampenhalterung und die Lampe fällt herunterH. Ausfall des Lampenschaltkreises aufgrund von Straßenvibrationen und GefälleKlassifizierung des Fahrradlampentests:Umwelttest, mechanischer Test, Strahlungstest, elektrischer TestErster charakteristischer Test:Nehmen Sie 30 beliebige, zünden Sie die Lampe mit einer Gleichstromversorgung entsprechend der Nennspannung an. Nachdem die Eigenschaften stabil sind, messen Sie den Abstand zwischen dem Strom und dem optischen Zentrum. Weniger als 10 defekte Produkte sind qualifiziert, mehr als 22 sind unqualifiziert Liegt die Anzahl der fehlerhaften Produkte zwischen 11 und 22, werden weitere 100 Proben zur Prüfung entnommen, und die Anzahl der fehlerhaften Produkte bei der Erstprüfung gilt als qualifiziert, wenn die Anzahl unter 22 liegt. Wenn die Anzahl 22 übersteigt, wird sie disqualifiziert.Lebenstest: 10 Lampen haben die erste Kennlinienprüfung bestanden, 8 davon erfüllten die Anforderungen.Fahrradtestgeschwindigkeit: Simulierte 15 km/h-UmgebungHochtemperaturtest (Temperaturtest): 80℃, 85℃, 90℃Tieftemperaturtest: -20℃Temperaturzyklus: 50℃(60min)→ Normaltemperatur (30min)→20(60min)→ Normaltemperatur (30min), 2 ZyklenNasshitzetest: 30℃/95 % relative Luftfeuchtigkeit/48 StundenStress-Screening-Test: Hohe Temperatur: 85℃←→ Niedrige Temperatur: -25℃, Verweilzeit: 30min, Zyklus: 5Zyklen, Einschalten, Zeit: ≧24hShell-Salzsprühtest: 20℃/15 % Salzkonzentration/Spray für 6 Stunden, Bestimmungsmethode: Auf der Oberfläche der Schale darf kein offensichtlicher Rost auftretenWasserdichtigkeitstest:Beschreibung: Die IPX-Einstufung regenfester Lampen muss mindestens IPX3 oder höher seinIPX3 (Wasserbeständigkeit): Lassen Sie 10 Liter Wasser senkrecht aus einer Höhe von 200 cm bei 60 ° fallen (Testzeit: 10 Minuten).IPX4 (Anti-Wasser, Anti-Spritzer): 10 Liter Wasser tropfen aus 30 ~ 50 cm in jede Richtung (Testzeit: 10 Minuten)IPX5: 3 m 12,5 l Wasser aus jeder Richtung [schwaches Wasser] (Testzeit: 3 Minuten)IPX6:3m Starkes Sprühen von 30 Litern aus jeder Richtung [starkes Wasser, Druck: 100 kPa] (Testzeit: 3 Minuten)IPX7 (lebenslang wasserdicht): Es kann 30 Minuten lang unter 1 m im Wasser verwendet werdenVibrationstest: Vibrationszahl 11,7 ~ 20 Hz/Amplitude: 11 ~ 4 mm/ Zeit: auf und ab 2 Stunden, etwa 2 Stunden, 2 Stunden vorher und nach 2 Stunden/Beschleunigung 4 ~ 5 gFalltest: 1 Meter (Handsturz), 2 Meter (Fahrradsturz, Sturz vom Rahmen)/ Betonboden/viermal/vier SeitenSchlagtest: 10 mm flache Holzplattform/Abstand: 1 m/Durchmesser 20 mm Masse 36 g Stahlkugel freier Fall/Oberseite und Seite einmalAuswirkungen bei niedriger Temperatur: Wenn die Probe auf -5 °C abgekühlt ist, halten Sie diese Temperatur drei Stunden lang aufrecht und führen Sie dann den Schlagtest durchBestrahlungstest: Langzeitbestrahlungshelligkeitstest, Niederspannungsbestrahlungstest, Lichthelligkeit, LichtfarbeSortierung der Substantive „Fahrradlampe“:
Natürlicher Konvektionstest (kein Windzirkulationstemperaturtest) und SpezifikationAudiovisuelle Heimunterhaltungsgeräte und Automobilelektronik gehören zu den Schlüsselprodukten vieler Hersteller, und das Produkt im Entwicklungsprozess muss die Anpassungsfähigkeit des Produkts an Temperatur und elektronische Eigenschaften bei verschiedenen Temperaturen simulieren. Wenn jedoch der allgemeine Ofen oder eine Testkammer mit konstanter Temperatur und Luftfeuchtigkeit zur Simulation der Temperaturumgebung verwendet wird, verfügen sowohl der Ofen als auch die Testkammer mit konstanter Temperatur und Luftfeuchtigkeit über einen Testbereich, der mit einem Umwälzventilator ausgestattet ist, sodass es in der Umgebung zu Problemen mit der Windgeschwindigkeit kommt Testbereich. Während des Tests wird die Temperaturgleichmäßigkeit durch die Rotation des Umwälzventilators ausgeglichen. Obwohl durch die Windzirkulation eine gleichmäßige Temperaturverteilung im Testbereich erreicht werden kann, wird die Wärme des zu testenden Produkts auch durch die zirkulierende Luft abgeführt, was in der windfreien Einsatzumgebung erheblich zu Unstimmigkeiten mit dem tatsächlichen Produkt führt (z. B. Wohnzimmer, Innenbereich). Aufgrund des Verhältnisses der Windzirkulation beträgt der Temperaturunterschied des zu testenden Produkts fast 10 ° C. Um die tatsächlichen Umgebungsbedingungen zu simulieren, werden viele Menschen missverstehen, dass nur die Testmaschine Temperatur erzeugen kann (z. B : Ofen, Prüfkammer mit konstanter Temperatur und Luftfeuchtigkeit) können einen natürlichen Konvektionstest durchführen, tatsächlich ist dies jedoch nicht der Fall. In der Spezifikation werden besondere Anforderungen an die Windgeschwindigkeit gestellt und eine Testumgebung ohne Windgeschwindigkeit gefordert. Durch die Testausrüstung für natürliche Konvektion (kein Test mit erzwungener Windzirkulation) wird eine Temperaturumgebung ohne Lüfter erzeugt (Test für natürliche Konvektion) und anschließend wird der Testintegrationstest durchgeführt, um die Temperatur des zu testenden Produkts zu ermitteln. Diese Lösung kann auf den tatsächlichen Umgebungstemperaturtest von haushaltsbezogenen elektronischen Produkten oder engen Räumen angewendet werden (z. B. großer LCD-Fernseher, Auto-Cockpit, Autoelektronik, Laptop, Desktop-Computer, Spielekonsole, Stereoanlage usw.).Der Unterschied der Testumgebung mit oder ohne Windzirkulation für den Test des zu testenden Produkts:Wenn das zu prüfende Produkt nicht mit Strom versorgt wird, erwärmt sich das zu prüfende Produkt nicht selbst, seine Wärmequelle nimmt nur die Luftwärme im Prüfofen auf, und wenn das zu prüfende Produkt mit Strom versorgt und erhitzt wird, wird die Windzirkulation im Ofen erzeugt Der Prüfofen entzieht dem zu prüfenden Produkt die Wärme. Mit jeder Zunahme der Windgeschwindigkeit um 1 Meter verringert sich die Wärme um etwa 10 %. Angenommen, die Temperatureigenschaften elektronischer Produkte werden in einer Innenumgebung ohne Klimaanlage simuliert, wenn ein Ofen oder eine Testkammer mit konstanter Temperatur und Luftfeuchtigkeit verwendet wird, um 35 ° C zu simulieren, obwohl die Umgebung im Testbereich innerhalb von 35 ° C gesteuert werden kann Durch elektrische Heizung und Gefrieren entziehen die Windzirkulation des Ofens und die Testkammer mit konstanter Temperatur und Luftfeuchtigkeit dem zu testenden Produkt Wärme, sodass die tatsächliche Temperatur des zu testenden Produkts niedriger ist als die Temperatur im realen Zustand ohne Wind. Daher ist es notwendig, eine Testmaschine für natürliche Konvektion ohne Windgeschwindigkeit zu verwenden, um die tatsächliche windstille Umgebung effektiv zu simulieren (z. B. Innenraum, nicht startendes Auto-Cockpit, Instrumentenchassis, wasserdichte Box im Freien usw.).Raumklima ohne Windzirkulation und solare Strahlungswärmeeinstrahlung:Simulieren Sie mithilfe des Testers für natürliche Konvektion die tatsächliche Nutzung der realen Konvektionsumgebung der Klimaanlage durch den Kunden, die Hot-Spot-Analyse und die Wärmeableitungseigenschaften der Produktbewertung, z. B. den LCD-Fernseher auf dem Foto, um nicht nur seine eigene Wärmeableitung zu berücksichtigen, sondern auch Um die Auswirkungen der Wärmestrahlung außerhalb des Fensters zu bewerten, kann die Wärmestrahlung für das Produkt zusätzliche Strahlungswärme über 35 ° C erzeugen.Vergleichstabelle der Windgeschwindigkeit und des zu testenden IC-Produkts:Wenn die Umgebungswindgeschwindigkeit schneller ist, entzieht die IC-Oberflächentemperatur aufgrund des Windzyklus auch die IC-Oberflächenwärme, was zu einer schnelleren Windgeschwindigkeit und niedrigeren Temperatur führt. Wenn die Windgeschwindigkeit 0 beträgt, beträgt die Temperatur 100 °C, aber wann Die Windgeschwindigkeit erreicht 5 m/s, die IC-Oberflächentemperatur lag unter 80 °C.Test der ungezwungenen Luftzirkulation:Gemäß den Spezifikationsanforderungen von IEC60068-2-2 ist es im Hochtemperaturtestprozess erforderlich, die Testbedingungen ohne erzwungene Luftzirkulation durchzuführen, der Testprozess muss unter der windfreien Zirkulationskomponente aufrechterhalten werden und das Der Hochtemperaturtest wird im Testofen durchgeführt, sodass der Test nicht in der Testkammer oder im Ofen mit konstanter Temperatur und Luftfeuchtigkeit durchgeführt werden kann und der natürliche Konvektionstester zur Simulation der freien Luftbedingungen verwendet werden kann.Beschreibung der Testbedingungen:Prüfvorgabe für ungezwungene Luftzirkulation: IEC-68-2-2, GB2423.2, GB2423.2-89 3.3.1Test der ungezwungenen Luftzirkulation: Der Testzustand der ungezwungenen Luftzirkulation kann den Zustand der freien Luft gut simulierenGB2423.2-89 3.1.1:Bei der Messung unter freien Luftbedingungen ist die Temperatur der Testprobe stabil, die Temperatur des heißesten Punktes auf der Oberfläche ist mehr als 5℃ höher als die Temperatur des umgebenden großen Geräts, es handelt sich um eine Wärmeableitungstestprobe. andernfalls handelt es sich um eine Testprobe ohne Wärmeableitung.GB2423.2-8 10 (Test des Wärmeableitungstests, Temperaturgradiententest der Probe):Es wird ein Standardtestverfahren bereitgestellt, um die Anpassungsfähigkeit thermischer elektronischer Produkte (einschließlich Komponenten, anderer Produkte auf Geräteebene) für den Einsatz bei hohen Temperaturen zu bestimmen.Testanforderungen:A. Prüfmaschine ohne forcierte Luftzirkulation (ausgestattet mit einem Ventilator oder Gebläse)B. Einzelnes TestmusterC. Die Heizrate beträgt nicht mehr als 1℃/minD. Nachdem die Temperatur der Testprobe Stabilität erreicht hat, wird die Testprobe mit Strom versorgt oder die elektrische Belastung des Hauses durchgeführt, um die elektrische Leistung zu ermittelnMerkmale der Testkammer mit natürlicher Konvektion:1. Kann die Wärmeabgabe des zu prüfenden Produkts nach dem Einschalten bewerten, um die beste Gleichmäßigkeit der Verteilung zu gewährleisten;2. In Kombination mit einem digitalen Datensammler können die relevanten Temperaturinformationen des zu testenden Produkts für eine synchrone Mehrspuranalyse effektiv gemessen werden.3. Zeichnen Sie die Informationen von mehr als 20 Schienen auf (synchrone Aufzeichnung der Temperaturverteilung im Testofen, Mehrspurtemperatur des zu prüfenden Produkts, Durchschnittstemperatur usw.).4. Der Controller kann den mehrspurigen Temperaturaufzeichnungswert und die Aufzeichnungskurve direkt anzeigen. Mehrspurige Prüfkurven können über den Controller auf einem USB-Stick gespeichert werden;5. Die Kurvenanalysesoftware kann die mehrspurige Temperaturkurve intuitiv anzeigen und EXCEL-Berichte ausgeben, und der Controller verfügt über drei Arten der Anzeige [Komplexes Englisch];6. Auswahl mehrerer Thermoelement-Temperatursensoren (B, E, J, K, N, R, S, T);7. Skalierbar, um die Heizrate zu erhöhen und die Stabilitätsplanung zu steuern.
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.