Banner
Heim

Präzisionsofen

Präzisionsofen

  • Functional Features of the OVEN Series
    Nov 11, 2025
       OVEN is engineered to deliver high-precision temperature and pressure environments, catering to demanding applications in R&D and manufacturing. It serves a wide range of industries, including electronics, semiconductors, aerospace, and automotive. Its primary features are as follow:​ 1. User-Friendly Operation: Equipped with a large-inch photo-level true-color ultra-large touchscreen interface, the panel is provided with operation, over-temperature setting, shift/monitoring, and shutdown/reset buttons, enabling intuitive and easy operation. It comes with a standard USB interface for downloading curves and data. Operators can program after simple training, and can also independently input information such as the user unit and department, making the machine status clear at a glance.​ 2. Safety Protection: It has six major protection functions: overcurrent protection, overvoltage protection, undervoltage protection, overload protection, power module protection, and over-temperature protection. When the equipment malfunctions, it will alarm and display solutions, and activate self-protection. For low-level alarms, only personnel with specific permissions can unlock with a password to continue operation, ensuring high safety.​ 3. Accurate and Stable Core Performance of Temperature and Pressure​  ① Temperature Control: The range covers RT+10~300℃ (long-term safe use ≤260℃), with a temperature adjustment accuracy of ±0.5℃ in a vacuum environment and ±1℃ in an atmospheric environment.​  ② Vacuum Pressure Performance: The minimum vacuum degree can reach -99.9 kpa, which is accurately monitored by a semiconductor pressure sensor. PID control is also adopted to realize dynamic pressure adjustment.​  ③ Environmental Adaptability and Uniformity: Calibrated based on the conditions of 23℃ ambient temperature, rated voltage, and no test samples, it is suitable for laboratory and industrial scenarios. Some models are equipped with horizontal cross-flow air supply and three-sided circulation air ducts to ensure the temperature uniformity of the working chamber.​     Lab Companion ovens come in a comprehensive selection of sizes, types, and performance specs. Backed by free in-warranty service for non-human errors and transparent post-warranty support, we ensure lifelong operational security.
    Mehr lesen
  • Lab Industrial High-Temperature Aging Oven
    Nov 05, 2025
    An industrial high-temperature aging oven is a device that conducts accelerated aging tests on industrial products (such as electronics, electrical appliances, components, chemical materials, etc.) by simulating high-temperature environments. By applying high-temperature stress, potential defects and faults of the products can be exposed in advance, thereby screening out early-failed products and enhancing the reliability and stability of the products leaving the factory. Its core components mainly include the heating system, circulation system, control system and safety protection system.   Main features: Firstly, it has a wide operating temperature range, typically from room temperature +10°C to +200°C or 300 °C. Temperature uniformity is a key indicator for evaluating the performance of an oven. The temperature difference at each point inside the oven is ±2°C, and the temperature control accuracy usually reaches ±0.1°C to ±1°C, ensuring the precision and repeatability of the test conditions. In addition, the heating rate can be set according to the test requirements, ranging from linear heating to rapid heating. The internal structure of the test chamber is usually made of stainless steel (such as SUS304), which is heat-resistant and corrosion-resistant. The shell is generally made of high-quality cold-rolled steel plate and the surface is treated with plastic spraying. Finally, the insulation layer is usually made of high-density aluminosilicate cotton or rock wool, with sufficient thickness to ensure that the surface temperature of the box is low and energy-saving. The air duct is designed for horizontal or vertical air supply to ensure that the hot air can flow evenly through each product under test.   Aging ovens are widely used in all industries that have high requirements for product reliability: Electronics industry: IC chips, PCB circuit boards, power supplies, chargers, LED displays/lamps, automotive electronics, etc. Electric appliances: transformers, relays, capacitors, circuit breakers, motors, etc. Communication products: mobile phones, routers, base station equipment, optical modules, etc. Chemical materials: Conduct high-temperature aging resistance tests on coatings, plastics, rubbers, adhesives, etc. Automotive parts: various sensors, controllers (ECUs), wiring harnesses, etc.   How to choose the right industrial high-temperature aging oven? When making a choice, the following factors need to be comprehensively considered: 1. Temperature range: According to the product testing standards, select the model that can meet the highest and lowest temperature requirements, and leave a certain margin. 2. Inner box size: Select an appropriate volume based on the size and quantity of the products to be tested. Remember to reserve space to ensure air circulation. 3. Temperature uniformity and accuracy: The higher the requirements, the higher the equipment cost and manufacturing difficulty. Choose according to the strictness of the test. 4. Load condition: If the product will generate heat by itself during the testing process (i.e., "load testing"), it is necessary to inform the equipment manufacturer so that they can calculate and configure sufficient heating and heat dissipation capacity. 5. Control System and Functions: Is program control (multi-stage temperature rise and heat preservation) required? Is it necessary to record and export the temperature curve data? Whether remote monitoring and other factors are needed Industrial high-temperature aging ovens are an indispensable part of modern quality engineering. Through sample aging tests, it intercepts potential faulty products before they leave the factory, significantly reducing the market return rate and after-sales maintenance costs, and earning credibility and long-term benefits for the enterprise. When making a purchase, you can communicate fully with us based on the characteristics of your own products and testing requirements, and choose the most suitable solution.
    Mehr lesen
  • Flame-retardant PP Materials in Industry Working Principle
    Oct 27, 2025
    Polypropylene (PP) itself is a highly flammable hydrocarbon with a limiting oxygen index (LOI) of only 17.8%. It will continue to burn even after being removed from the fire source. The core principle of flame-retardant PP is to interrupt or delay its combustion cycle through physical and chemical means. Combustion requires the simultaneous existence of three elements: combustible material, heat and oxygen. The function of flame retardants is to destroy this "burning triangle".   In industry, flame retardancy is mainly achieved by adding flame retardants to PP. Different types of flame retardants function through the following mechanisms: 1. Gas-phase flame retardant mechanism This is one of the most common mechanisms, especially applicable to traditional halogen-based flame retardants. When flame retardants are heated and decomposed, they can capture the free radicals (such as H· and HO·) that maintain the combustion chain reaction in the combustion reaction zone (flame), causing their concentrations to drop sharply and thus interrupting the combustion. 2. Condensed phase flame retardant mechanism This is the most mainstream mechanism of halogen-free flame-retardant PP. Flame retardants promote the formation of a uniform and dense carbon layer on the surface of polymers. This layer of carbon has three major functions. The first step is to prevent external heat from entering the interior of the polymer. Secondly, it prevents the escape of flammable gases inside and the entry of external oxygen. Finally, it inhibits the further pyrolysis of the polymer and the generation of smoke. When a fire occurs, the acid source promotes the dehydration, cross-linking and carbonization of the carbon source. Meanwhile, the large amount of gas produced by the decomposition of the gas source causes the softened carbon layer to expand, eventually forming a porous, dense and strong foam carbon layer, which protects the underlying PP like "armor". 3. Cooling/heat absorption mechanism Flame retardants absorb a large amount of heat during the decomposition process, reducing the surface temperature of polymers and making it difficult for them to continuously pyrolyze and produce flammable gases. Typical representatives include aluminium hydroxide (ATH) and magnesium hydroxide (MH). When they decompose, they absorb a large amount of heat (endothermic reaction) and release water vapor. The water vapor can not only dilute flammable gases but also play a cooling role. 4. Dilution mechanism Flame retardants decompose to produce a large amount of non-flammable gases (such as water vapor and CO₂, etc.), which can dilute the concentration of flammable gases and oxygen near the polymer surface, making combustion unsustainable. Both the gas sources of metal hydroxides and intumescent flame retardants have this function.   In conclusion, the working principle of flame-retardant PP in industry is a complex process involving the synergy of multiple mechanisms. Modern flame-retardant PP technology is developing towards halogen-free, low smoke, low toxicity and high efficiency. Among them, the condensed phase flame-retardant mechanism represented by intumescent flame retardants (IFR) is the core of current research and application. By carefully designing flame-retardant formulas, the best balance can be achieved among flame-retardant efficiency, material mechanical properties, processing performance and cost.
    Mehr lesen
  • Customized Solution for Double-Door Temperature Test Equipment
    Oct 25, 2025
    1.Core customization requirement analysis 1.1 The standard box size or load-bearing capacity (such as automotive parts, large unmanned aerial vehicles, and entire cabinet servers) cannot meet the requirements. Special sample racks, trays or suspension devices are required. The test samples need to be powered on and run inside the box, and connected to cables or pipes (such as battery pack charge and discharge tests, engine component tests). Oil stains, particulate matter or corrosive gases may be released during the sample testing process. 1.2 It needs to be connected with mechanical arms and AGV carts to achieve automatic loading and unloading. The heating and cooling rates required far exceed the standard specifications (such as >15°C/min). 1.3 The equipment needs to adapt to specific room sizes, door opening sizes or floor heights. There are special requirements for the power supply (if it cannot meet 380V) and the cooling water source (if a cooling tower cannot be provided).   2. Key customized technical specifications 2.1 Customized Dimensions The internal effective space is determined entirely based on the size and quantity of the customer's samples. The minimum distance between the sample and the box wall needs to be considered to ensure uniform airflow. It is necessary to clearly define the size of the door, the material of the sealing strip, the door lock mechanism (mechanical lock, pneumatic auxiliary lock), and the size and quantity of the observation window. The inner box is usually made of SUS304 stainless steel. The outer box body can be made of high-quality steel plate with plastic spraying or SUS304. For corrosive tests, more durable materials should be specified. Test holes are used for leads. The size, quantity and position of the hole diameters (such as left or right) need to be customized, and sealing plugs or flanges should be provided. 2.2 Confirm the test interval The technical index standards for temperature are usually from -70°C to +150°C. The standard heating and cooling rate is 1 to 3°C/min. Linear rapid temperature change: 5 to 10°C/min. Nonlinear rapid temperature change: Customizable to 15°C/min or even higher. This is directly related to the power configuration of the refrigeration and heating systems and is a key factor influencing the cost. Customize stricter control accuracy, such as uniformity ≤±1.0°C and fluctuation ≤±0.5°C. 2.3 Refrigeration System Air cooling: Suitable for sites where the ambient temperature is not high and the ventilation around the equipment is good. Water cooling: It is suitable for large cooling capacity, high heat generation samples, or situations with high ambient temperatures. It is more efficient but requires a cooling tower. Cascade refrigeration: It is used for low-temperature requirements below -40°C and usually adopts two-stage cascade. 2.4 Installation Method The refrigeration system of the integrated machine is located at the top or bottom of the box, with a compact structure and convenient installation. The split-type refrigeration unit is separated from the box body and is suitable for high-power equipment. It can discharge noise and heat to the outside, but the installation is complex. 2.5 Control System and Software The controller customizes the size and brand of the color touch screen, supports multi-segment programming, program group loops, step jumps, etc. Customized LAN interface for connecting to the upper computer (computer) for data monitoring and recording. Whether it is necessary to support remote network monitoring and operation, as well as customize record intervals and storage capacity. 2.6 Independent sample over-temperature protector. Compressor overheat, overcurrent and overpressure protection; Fan overcurrent protection Cooling water cut-off protection and automatic stop test function when the door is opened; Leakage or short-circuit protection; Sound and light alarm prompt.   Customizing double-door temperature test equipment is a systematic project. The key to success lies in the clarification and refinement of the initial requirements. A detailed and unambiguous "Technical Requirements Document" serves as the cornerstone for communication between equipment suppliers and customers. It ensures that the final delivered equipment fully complies with testing, process, and site requirements, avoiding subsequent disputes and cost overruns.
    Mehr lesen
  • Lab Aging Test Chamber Working Principle
    Oct 17, 2025
    Many products (such as rubber, plastic, insulating materials, electronic components, etc.) will age due to the combined effects of heat and oxygen when exposed to the natural environment over a long period of use, such as becoming hard, brittle, cracking, and experiencing a decline in performance. This process is very slow in its natural state. The air-exchange aging test chamber greatly accelerates the aging process by creating a continuously high-temperature environment and constantly replenishing fresh air in the laboratory, thereby evaluating the long-term heat aging resistance of materials in a short period of time.   The working principle of Lab aging test chamber mainly relies on the collaborative efforts of three systems: 1. The heating system provides and maintains a high-temperature environment inside the test chamber. High-performance electric heaters are usually adopted and installed at the bottom, back or in the air duct of the test chamber. After the controller sets the target temperature (for example, 150°C), the heater starts to work. The air is blown through the heater by a high-power fan. The heated air is forced to circulate inside the box, causing the temperature inside the box to rise evenly and remain at the set value. 2. The ventilation system is the key that distinguishes it from ordinary ovens. At high temperatures, the sample will undergo an oxidation reaction with oxygen in the air, consuming oxygen and generating volatile products. If the air is not exchanged, the oxygen concentration inside the box will decrease, the reaction will slow down, and it may even be surrounded by the products of the sample's own decomposition. This is inconsistent with the actual usage of the product in a naturally ventilated environment. 3. The control system precisely controls the parameters of the entire testing process. The PID (Proportional-integral-Derivative) intelligent control mode is adopted. The real-time temperature is fed back through the temperature sensor inside the box (such as platinum resistance PT100). The controller precisely adjusts the output power of the heater to ensure that the temperature fluctuation is extremely small and remains stable at the set value. Set the air exchange volume within a unit of time (for example, 50 air changes per hour). This is one of the core parameters of the air-exchange aging test chamber, which usually follows relevant test standards (such as GB/T, ASTM, IEC, etc.).   The test chamber creates a high-temperature environment through electric heaters, achieves uniform temperature inside the box by using centrifugal fans, and continuously expels exhaust gases and draws in fresh air through a unique ventilation system. Thus, under controllable experimental conditions, it simulates and accelerates the aging process of materials in a naturally ventilated thermal and oxygen environment. The biggest difference between it and a common oven lies in its "ventilation" function, which enables its test results to more truly reflect the heat aging resistance of the material during long-term use.
    Mehr lesen
  • Lab Thermal Resistance Sensing Core Working Principle
    Oct 16, 2025
    The core of the thermal resistance induction in high and low temperature test chambers also utilizes the physical property that the resistance value of platinum metal changes with temperature. The core logic of the control system is a closed-loop feedback control: measurement → comparison → regulation → stability   Firstly, the thermal resistance sensor senses the current temperature inside the chamber and converts it into a resistance value. The measurement circuit then converts the resistance value into a temperature signal and transmits it to the controller of the test chamber. The controller compares this measured temperature with the target temperature set by the user and calculates the deviation value. Subsequently, the controller outputs instructions to the actuator (such as the heater, compressor, liquid nitrogen valve, etc.) based on the magnitude and direction of the deviation. If the measured temperature is lower than the target temperature, start the heater to heat up; otherwise, start the refrigeration system to cool down. Through such continuous measurement, comparison and adjustment, the temperature inside the box is eventually stabilized at the target temperature set by the user and the required accuracy is maintained.   Due to the fact that high and low temperature test chambers need to simulate extreme and rapidly changing temperature environments (such as cycles from -70°C to +150°C), the requirements for thermal resistance sensors are much higher than those for ordinary industrial temperature measurement.   Meanwhile, there is usually more than one sensor inside the high and low temperature test chamber. The main control sensor is usually installed in the working space of the test chamber, close to the air outlet or at a representative position. It is the core of temperature control. The controller decides on heating or cooling based on its readings to ensure that the temperature in the working area meets the requirements of the test program. The monitoring sensors may be installed at other positions inside the box to verify with the main control sensors, thereby enhancing the reliability of the system. Over-temperature protection is independent of the main control system. When the main control system fails and the temperature exceeds the safety upper limit (or lower limit), the monitoring sensor will trigger an independent over-temperature protection circuit, immediately cutting off the heating (or cooling) power supply to protect the test samples and equipment safety. This is a crucial safety function.   Lab thermal resistance sensor is a precision component that integrates high-precision measurement, robust packaging, and system safety monitoring. It serves as the foundation and "sensory organ" for the entire test chamber to achieve precise and reliable temperature field control.
    Mehr lesen
  • Lab Dust Free Oven Environmental Test Condition
    Oct 11, 2025
    Internal environmental conditions Benchmark cleanliness: At the beginning of the test, the chamber must reach the highest cleanliness level it claims (such as ISO Class 5 / Class 100). This is the premise of all tests. Before the test, the oven needs to run a long period of "self-cleaning" until the particle count shows that the concentration is stable below the standard for multiple consecutive times. Temperature and Humidity: Although the oven is a heating device, its initial state needs to be clearly defined. The initial environment for testing is usually normal temperature and humidity, for example, a temperature of 20±5°C and a relative humidity of 30-60% RH. This is crucial for testing the heating time and temperature uniformity. If the process has requirements for the dew point of the environment, it may be necessary to record the initial absolute humidity. Airflow state: The test should be conducted under the specified airflow pattern, typically in a vertical or horizontal laminar flow state. The fan must operate at the rated speed, with stable air pressure and air volume. Test load: The test is divided into two conditions: no-load and full-load. No-load is the benchmark test for equipment performance. Fill the effective working space with a fully loaded simulated load (such as metal, pallets, etc.) to simulate the harshest working conditions. Full-load testing can truly reflect the impact of products on air flow and temperature fields in actual production.   External environmental conditions 1. The cleanliness level of the external environment must be lower than or equal to the cleanliness level designed by the oven itself. For instance, when testing an oven of Class 100, it is best to do it in a room of Class 1000 or cleaner. If the external environment is too dirty, it will seriously interfere with the measurement results of the internal cleanliness of the oven when opening and closing the door or when water seeps through gaps. 2. The laboratory requires a stable temperature and humidity environment. It is generally recommended to conduct the test under standard laboratory conditions, such as 23±2°C and 50±10% RH. Avoid testing in extreme or highly volatile environments. 3. The test area should be free of strong convective winds and it is best to maintain a slight positive pressure to prevent external contaminants from entering the test area. 4. The power supply voltage and frequency should be stable within the range required by the equipment. 5. The equipment should be placed on a ground or base with less vibration. There are no large stamping equipment, fans or other strong vibration sources around.   When testing a dust-free oven, controlling the external environment is as important as measuring the internal environment. An unstable, dirty or strongly interfering external environment can lead to distorted test data and fail to truly reflect the performance of the equipment. All test conditions should be clearly recorded in the final verification report to ensure the traceability and repeatability of the tests.
    Mehr lesen
  • Aufbau einer sicheren Testkammer-Testumgebung
    Sep 16, 2025
    Der Schlüssel zur Schaffung einer sicheren Testumgebung für das Labor Hoch- und Niedertemperaturprüfkammer liegt in der Gewährleistung der persönlichen Sicherheit, der Gerätesicherheit, der Sicherheit der Prüflinge und der Datengenauigkeit.1. Überlegungen zur persönlichen SicherheitBevor Sie die Tür der Hochtemperaturkammer öffnen, um die Probe zu entnehmen, müssen Sie die hitze- und kältebeständige Schutzausrüstung ordnungsgemäß tragen. Bei Arbeiten, bei denen es zu Spritzern oder dem Austreten extrem heißer/kalter Gase kommen kann, wird das Tragen einer Schutzmaske oder Schutzbrille empfohlen.Die Prüfkammer sollte in einem gut belüfteten Labor aufgestellt werden. Der Betrieb in engen Räumen sollte vermieden werden. Bei Hochtemperaturprüfungen können flüchtige Substanzen aus dem Prüfling freigesetzt werden. Eine gute Belüftung kann die Ansammlung schädlicher Gase verhindern.Stellen Sie sicher, dass die Netzkabelspezifikationen den Geräteanforderungen entsprechen und das Erdungskabel zuverlässig angeschlossen ist. Vor allem ist es strengstens verboten, Netzstecker, Schalter und Proben mit nassen Händen zu berühren, um einen Stromschlag zu vermeiden. 2. Installieren Sie das Gerät richtigDer vom Hersteller angegebene Mindestsicherheitsabstand (normalerweise mindestens 50–100 Zentimeter) muss auf der Rückseite, Oberseite und beiden Seiten des Geräts eingehalten werden, um den normalen Betrieb des Kondensators, des Kompressors und anderer Wärmeableitungssysteme zu gewährleisten. Eine schlechte Belüftung kann zu Überhitzung, Leistungsabfall und sogar zu Bränden des Geräts führen.Es wird empfohlen, für die Prüfkammer eine eigene Stromleitung bereitzustellen, um zu vermeiden, dass derselbe Stromkreis mit anderen Hochleistungsgeräten (wie Klimaanlagen und großen Instrumenten) geteilt wird, was zu Spannungsschwankungen oder Auslösungen führen kann.Die empfohlene Umgebungstemperatur für den Betrieb des Geräts liegt zwischen 5 °C und 30 °C. Zu hohe Umgebungstemperaturen erhöhen die Belastung des Kompressors erheblich, was zu einer Verringerung der Kühlleistung und Fehlfunktionen führt. Bitte beachten Sie, dass das Gerät nicht in direkter Sonneneinstrahlung, in der Nähe von Wärmequellen oder an Orten mit starken Vibrationen installiert werden sollte. 3. Gewährleistung der Gültigkeit und Wiederholbarkeit von TestsDie Proben sollten mittig im Arbeitsraum der Box platziert werden. Zwischen den Proben und zwischen ihnen und der Boxwand sollte ausreichend Platz sein (üblicherweise mehr als 50 mm empfohlen), um eine reibungslose Luftzirkulation in der Box sowie eine gleichmäßige und stabile Temperatur zu gewährleisten.Nach der Durchführung von Tests bei hohen Temperaturen und hoher Luftfeuchtigkeit (z. B. in einer Kammer mit konstanter Temperatur und Luftfeuchtigkeit) sollten, wenn Tests bei niedrigen Temperaturen erforderlich sind, Entfeuchtungsvorgänge durchgeführt werden, um eine übermäßige Eisbildung in der Kammer zu verhindern, die die Leistung des Geräts beeinträchtigen könnte.Das Testen brennbarer, explosiver, hochätzender und leichtflüchtiger Stoffe ist strengstens verboten, mit Ausnahme von speziell für diesen Zweck entwickelten explosionsgeschützten Prüfkammern. Es ist strengstens verboten, gefährliche Güter wie Alkohol und Benzin in gewöhnlichen Hoch- und Niedertemperaturkammern zu lagern. 4. Sicherheitstechnische Betriebsvorschriften und NotfallmaßnahmenÜberprüfen Sie vor dem Betrieb, ob die Tür des Behälters gut abgedichtet ist und ob die Türverriegelung normal funktioniert. Überprüfen Sie, ob der Behälter sauber und frei von Fremdkörpern ist. Überprüfen Sie, ob die eingestellte Temperaturkurve (das Programm) korrekt ist.Während der Testphase muss regelmäßig überprüft werden, ob der Betriebszustand des Geräts normal ist und ob ungewöhnliche Geräusche oder Alarme auftreten.Handhabung und Platzierung der Probe: Tragen Sie bei hohen und niedrigen Temperaturen geeignete Handschuhe. Drehen Sie sich nach dem Öffnen der Tür leicht zur Seite, um zu vermeiden, dass die Hitzewelle Ihr Gesicht trifft. Entnehmen Sie die Probe schnell und vorsichtig und legen Sie sie an einen sicheren Ort.Notfallmaßnahmen: Machen Sie sich mit der Position des Not-Aus-Schalters des Geräts vertraut und wissen Sie, wie Sie im Notfall die Hauptstromversorgung schnell unterbrechen können. In der Nähe sollten Kohlendioxid-Feuerlöscher (geeignet für elektrische Brände) anstelle von Wasser- oder Schaumfeuerlöschern bereitgestellt werden.
    Mehr lesen

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns