Funktionsprinzip und Klassifizierung der Vakuumpumpe im Vakuumtrockenofen1. Der Arbeitsdruck der Vakuumpumpe sollte den Grenzvakuum- und Arbeitsdruckanforderungen der Vakuumausrüstung entsprechen, und der beste Wert des Vakuumgrads der ausgewählten Vakuumpumpe beträgt 133 Pa = -0,1 MPa. Normalerweise ist der Vakuumgrad der ausgewählten Pumpe um die Hälfte oder sogar eine Größenordnung höher als der Vakuumgrad der Vakuumausrüstung.2. Wählen Sie den Arbeitspunkt der Vakuumpumpe richtig aus. Jede Pumpe hat einen bestimmten Betriebsdruckbereich.3. Die Vakuumpumpe sollte unter ihrem Arbeitsdruck in der Lage sein, das gesamte im Prozess der Vakuumausrüstung erzeugte Gas abzuleiten.4. Kombinieren Sie die Vakuumpumpe richtig. Da die Vakuumpumpe über selektives Pumpen verfügt, kann eine Pumpe manchmal die Pumpanforderungen nicht erfüllen und mehrere Pumpen müssen kombiniert werden, um sich gegenseitig zu ergänzen, um die Pumpanforderungen zu erfüllen, wie z. B. eine Titansublimationspumpe, die eine hohe Pumpgeschwindigkeit für Wasserstoff hat, dies aber kann Helium wird nicht gepumpt, und die dreipolige Sputter-Ionenpumpe (oder die bipolare asymmetrische Kathoden-Sputter-Ionenpumpe) hat eine bestimmte Pumpgeschwindigkeit für Argon. Durch die Kombination der beiden erhält das Vakuumgerät einen besseren Vakuumgrad. Darüber hinaus können einige Vakuumpumpen nicht bei Atmosphärendruck arbeiten und benötigen ein Vorvakuum; Da der Auslassdruck der Vakuumpumpe teilweise unter dem atmosphärischen Druck liegt, ist die vordere Pumpe erforderlich. Daher ist es erforderlich, die Pumpe zu kombinieren, um sie verwenden zu können.5, Vakuumausrüstung für Ölverschmutzungsanforderungen. Wenn die Ausrüstung unbedingt ölfrei sein muss, sollten verschiedene ölfreie Pumpen ausgewählt werden, z. B. Wasserringpumpen, Molekularsieb-Adsorptionspumpen, Sputter-Ionenpumpen, Kryopumpen usw. Wenn die Anforderungen nicht streng sind , Sie können sich für eine Ölpumpe entscheiden, außerdem können einige Maßnahmen zur Bekämpfung der Ölverschmutzung, wie Kühlfalle, Ablenkblech, Ölfalle usw., auch die Anforderungen an ein sauberes Vakuum erfüllen. Die Auswahl an Vakuumtrocknungsöfen unseres Unternehmens ist eine Drehschieberölpumpe , seine Hauptmerkmale: groß Kraft, hohe Geschwindigkeit, hohe Effizienz.6. Verstehen Sie die Zusammensetzung des gepumpten Gases, ob das Gas kondensierbaren Dampf enthält, ob Partikelstaub vorhanden ist, ob Korrosion vorliegt usw. Bei der Auswahl einer Vakuumpumpe müssen Sie die Gaszusammensetzung kennen und die entsprechende Pumpe auswählen das Gas, das gepumpt wird. Wenn das Gas Dampf, Partikel und korrosive Gase enthält, sollte die Installation von Zusatzgeräten an der Pumpeneinlassleitung in Betracht gezogen werden, z. B. ein Kondensator, ein Staubabscheider oder ein Flüssigwasserfilter.7. Welche Auswirkungen hat der von der Vakuumpumpe abgegebene Öldampf auf die Umwelt? Wenn die Umgebung nicht verschmutzt werden darf, können Sie eine ölfreie Vakuumpumpe wählen oder den Öldampf nach außen ableiten.8. Ob die von der Vakuumpumpe während des Betriebs erzeugten Vibrationen Auswirkungen auf den Prozess und die Umgebung haben. Wenn der Prozess dies nicht zulässt, sollten Sie eine vibrationsfreie Pumpe wählen oder Antivibrationsmaßnahmen ergreifen.9, Der Preis der Vakuumpumpe, Betriebs- und Wartungskosten.
Burn-in-TestBurn-in-Test ist der Prozess, durch den ein System frühzeitig Ausfälle von Halbleiterkomponenten (Kindersterblichkeit) erkennt und so die Zuverlässigkeit einer Halbleiterkomponente erhöht. Normalerweise werden Einbrenntests an elektronischen Geräten wie Laserdioden mit einem automatischen Laserdioden-Einbrennsystem durchgeführt, das die Komponente über einen längeren Zeitraum laufen lässt, um Probleme zu erkennen.Ein Burn-in-System nutzt modernste Technologie, um die Komponente zu testen und präzise Temperaturkontrolle, Leistung und optische (falls erforderlich) Messungen bereitzustellen, um die Präzision und Zuverlässigkeit sicherzustellen, die für die Herstellung, technische Bewertung und F&E-Anwendungen erforderlich sind.Einbrenntests können durchgeführt werden, um sicherzustellen, dass ein Gerät oder System ordnungsgemäß funktioniert, bevor es das Fertigungswerk verlässt, oder um zu bestätigen, dass neue Halbleiter aus dem Forschungs- und Entwicklungslabor die vorgesehenen Betriebsanforderungen erfüllen.Das Einbrennen erfolgt am besten auf Komponentenebene, wenn die Kosten für das Testen und Ersetzen von Teilen am niedrigsten sind. Das Einbrennen einer Platine oder Baugruppe ist schwierig, da für verschiedene Komponenten unterschiedliche Grenzwerte gelten.Es ist wichtig zu beachten, dass der Burn-In-Test normalerweise dazu dient, Geräte herauszufiltern, die während der „Säuglingssterblichkeitsphase“ (Beginn der Badewannenkurve) ausfallen, und dass die „Lebensdauer“ oder Abnutzung (Ende der Badewanne) nicht berücksichtigt wird Kurve) – hier kommt die Zuverlässigkeitsprüfung ins Spiel.Verschleiß ist das natürliche Ende der Lebensdauer einer Komponente oder eines Systems im Zusammenhang mit der kontinuierlichen Nutzung aufgrund der Wechselwirkung von Materialien mit der Umwelt. Dieses Versagensregime ist für die Lebensdauer des Produkts von besonderer Bedeutung. Es ist möglich, den Verschleiß mathematisch zu beschreiben, was das Konzept der Zuverlässigkeit und damit die Vorhersage der Lebensdauer ermöglicht.Was führt dazu, dass Komponenten beim Einbrennen ausfallen?Die Hauptursache für Fehler, die während des Burn-In-Tests erkannt werden, können dielektrische Fehler, Leiterfehler, Metallisierungsfehler, Elektromigration usw. sein. Diese Fehler sind inaktiv und manifestieren sich zufällig in Geräteausfällen während des Gerätelebenszyklus. Beim Burn-In-Test belastet ein automatisches Testgerät (ATE) das Gerät, wodurch sich diese ruhenden Fehler schneller als Ausfälle manifestieren und Ausfälle während der Kindersterblichkeitsphase aussortieren.Burn-In-Tests erkennen Fehler, die im Allgemeinen auf Unvollkommenheiten in den Herstellungs- und Verpackungsprozessen zurückzuführen sind, die mit zunehmender Schaltungskomplexität und aggressiver Technologieskalierung immer häufiger auftreten.Burn-in-TestparameterDie Spezifikationen für einen Burn-In-Test variieren je nach Gerät und Teststandard (Militär- oder Telekommunikationsstandards). Es erfordert normalerweise die elektrische und thermische Prüfung eines Produkts unter Verwendung eines erwarteten elektrischen Betriebszyklus (extreme Betriebsbedingungen), typischerweise über einen Zeitraum von 48 bis 168 Stunden. Die thermische Temperatur der Einbrennprüfkammer kann zwischen 25 °C und 140 °C liegen.Das Einbrennen wird bei Produkten während ihrer Herstellung angewendet, um frühzeitig Ausfälle zu erkennen, die durch Fehler in der Herstellungspraxis verursacht werden.Burn In führt im Wesentlichen Folgendes aus:Stress + extreme Bedingungen + Zeit verlängern = Beschleunigung der „normalen/nützlichen Lebensdauer“Arten von Burn-in-TestsDynamisches Einbrennen: Das Gerät wird hohen Spannungen und extremen Temperaturen ausgesetzt und gleichzeitig verschiedenen Eingabereizen ausgesetzt.Ein Burn-in-System gibt an jedes Gerät verschiedene elektrische Reize, während das Gerät extremen Temperaturen und Spannungen ausgesetzt ist. Der Vorteil des dynamischen Einbrennens besteht darin, dass es mehr interne Schaltkreise belasten kann, wodurch zusätzliche Fehlermechanismen auftreten. Das dynamische Einbrennen ist jedoch begrenzt, da es nicht vollständig simulieren kann, was das Gerät während der tatsächlichen Verwendung erleben würde, sodass möglicherweise nicht alle Schaltungsknoten belastet werden.Statisches Einbrennen: Der Prüfling (DUT) wird über einen längeren Zeitraum einer erhöhten, konstanten Temperatur ausgesetzt.Ein Burn-In-System legt extreme Spannungen, Ströme und Temperaturen an jedes Gerät an, ohne dass das Gerät bedient oder trainiert werden muss. Die Vorteile des statischen Einbrennens liegen in den geringen Kosten und der Einfachheit.Wie wird ein Burn-In-Test durchgeführt?Das Halbleiterbauelement wird auf speziellen Burn-in-Boards (BiB) platziert, während der Test in einer speziellen Burn-in-Kammer (BIC) durchgeführt wird.Erfahren Sie mehr über Burn-in Chamber (hier klicken)
Laboröfen und LaboröfenDesign mit Musterschutz als HauptzielLaboröfen sind ein unverzichtbares Hilfsmittel für Ihren täglichen Arbeitsablauf, vom einfachen Trocknen von Glaswaren bis hin zu sehr komplexen temperaturgesteuerten Heizanwendungen. Unser Portfolio an Heiz- und Trockenöfen bietet Temperaturstabilität und Reproduzierbarkeit für alle Ihre Anwendungsanforderungen. Die Heiz- und Trockenöfen von LABCOMPANION sind vor allem auf den Schutz der Proben ausgelegt und tragen zu überragender Effizienz, Sicherheit und Benutzerfreundlichkeit bei.Verstehen Sie natürliche und mechanische KonvektionPrinzip der natürlichen Konvektion:In einem Naturkonvektionsofen strömt heiße Luft von unten nach unten, sodass die Temperatur gleichmäßig verteilt ist (siehe Abbildung oben). Kein Lüfter bläst aktiv die Luft in die Box. Der Vorteil dieser Technologie liegt in der extrem geringen Luftturbulenz, die ein schonendes Trocknen und Erhitzen ermöglicht.Prinzip der mechanischen Konvektion:In einem Ofen mit mechanischer Konvektion (Umluftantrieb) treibt ein integrierter Ventilator die Luft im Ofen aktiv an, um eine gleichmäßige Temperaturverteilung in der gesamten Kammer zu erreichen (siehe Abbildung oben). Ein großer Vorteil ist die hervorragende Temperaturgleichmäßigkeit, die reproduzierbare Ergebnisse bei Anwendungen wie der Materialprüfung sowie bei Trocknungslösungen mit sehr anspruchsvollen Temperaturanforderungen ermöglicht. Ein weiterer Vorteil besteht darin, dass die Trocknungsgeschwindigkeit viel schneller ist als bei natürlicher Konvektion. Nach dem Öffnen der Tür wird die Temperatur im mechanischen Konvektionsofen schneller wieder auf das eingestellte Temperaturniveau gebracht.
Vergleich der Testkammer mit natürlicher Konvektion, der Testkammer mit konstanter Temperatur und Luftfeuchtigkeit und dem HochtemperaturofenAnweisungen:Audiovisuelle Heimunterhaltungsgeräte und Automobilelektronik gehören zu den Schlüsselprodukten vieler Hersteller, und das Produkt im Entwicklungsprozess muss die Anpassungsfähigkeit des Produkts an Temperatur und elektronische Eigenschaften bei verschiedenen Temperaturen simulieren. Wenn jedoch ein allgemeiner Ofen oder eine Wärme- und Feuchtigkeitskammer zur Simulation der Temperaturumgebung verwendet wird, verfügt entweder der Ofen oder die Wärme- und Feuchtigkeitskammer über einen Testbereich, der mit einem Umwälzventilator ausgestattet ist, sodass es im Testbereich zu Problemen mit der Windgeschwindigkeit kommt.Während des Tests wird die Temperaturgleichmäßigkeit durch die Rotation des Umwälzventilators ausgeglichen. Obwohl durch die Windzirkulation eine gleichmäßige Temperaturverteilung im Testbereich erreicht werden kann, wird die Wärme des zu testenden Produkts auch durch die zirkulierende Luft abgeführt, was in der windfreien Einsatzumgebung erheblich zu Unstimmigkeiten mit dem tatsächlichen Produkt führt (z. B. Wohnzimmer, Innenbereich).Aufgrund des Verhältnisses der Windzirkulation beträgt der Temperaturunterschied des zu prüfenden Produkts nahezu 10℃. Um die tatsächliche Nutzung von Umgebungsbedingungen zu simulieren, werden viele Menschen missverstehen, dass nur die Testkammer Temperatur erzeugen kann (z. B. Ofen, Luftfeuchtigkeitskammer mit konstanter Temperatur) und natürliche Konvektionstests durchführen kann. Tatsächlich ist dies nicht der Fall. In der Spezifikation werden besondere Anforderungen an die Windgeschwindigkeit gestellt und eine Testumgebung ohne Windgeschwindigkeit gefordert. Durch die Testausrüstung und Software für natürliche Konvektion wird die Temperaturumgebung ohne Durchgang durch den Lüfter (natürliche Konvektion) erzeugt und der Testintegrationstest zur Temperaturerkennung des zu testenden Produkts durchgeführt. Diese Lösung kann für Heimelektronik oder reale Umgebungstemperaturtests in engen Räumen (z. B. große LCD-Fernseher, Autocockpits, Automobilelektronik, Laptops, Desktops, Spielekonsolen, Stereoanlagen usw.) verwendet werden.Testspezifikation für ungezwungene Luftzirkulation: IEC-68-2-2, GB2423.2, GB2423.2-89 3.31 Der Unterschied zwischen der Testumgebung mit oder ohne Windzirkulation und dem Test der zu testenden Produkte:Anweisungen:Wenn das zu prüfende Produkt nicht mit Strom versorgt wird, erwärmt sich das zu prüfende Produkt nicht selbst, seine Wärmequelle nimmt nur die Luftwärme im Prüfofen auf, und wenn das zu prüfende Produkt mit Strom versorgt und erhitzt wird, wird die Windzirkulation im Ofen erzeugt Der Prüfofen entzieht dem zu prüfenden Produkt die Wärme. Mit jeder Zunahme der Windgeschwindigkeit um 1 Meter verringert sich die Wärme um etwa 10 %. Angenommen, die Temperatureigenschaften elektronischer Produkte in einer Innenumgebung ohne Klimaanlage zu simulieren. Wenn ein Ofen oder ein Luftbefeuchter mit konstanter Temperatur verwendet wird, um 35 °C zu simulieren, kann die Umgebung zwar durch elektrische Heizung und Kompressor auf 35 °C geregelt werden, die Windzirkulation des Ofens und der Wärme- und Befeuchtungstestkammer führt jedoch die Wärme ab des zu testenden Produkts. Damit ist die tatsächliche Temperatur des zu prüfenden Produkts niedriger als die Temperatur im realen windstillen Zustand. Es ist notwendig, eine Testkammer mit natürlicher Konvektion ohne Windgeschwindigkeit zu verwenden, um die tatsächliche windstille Umgebung effektiv zu simulieren (Innenraum, kein Startauto-Cockpit, Instrumentenchassis, wasserdichte Außenkammer ... Solche Umgebung).Vergleichstabelle der Windgeschwindigkeit und des zu testenden IC-Produkts:Beschreibung: Wenn die Umgebungswindgeschwindigkeit höher ist, entzieht die IC-Oberflächentemperatur aufgrund des Windzyklus auch die IC-Oberflächenwärme, was dazu führt, dass die Windgeschwindigkeit schneller und die Temperatur umso niedriger ist.
AEC-Q200-Zertifizierungsspezifikation für Stresstests passiver Komponenten für die Automobilindustrie In den letzten Jahren, mit dem Fortschritt multifunktionaler Anwendungen im Fahrzeug und im Zuge der Popularisierung von Hybridfahrzeugen und Elektrofahrzeugen, nehmen auch neue Anwendungen zu, die auf Leistungsüberwachungsfunktionen, Miniaturisierung von Fahrzeugteilen und hohen Zuverlässigkeitsanforderungen basieren Die Temperaturumgebungsbedingungen (-40 ~ +125℃, -55℃ ~ +175℃) nehmen zu. Ein Auto besteht aus vielen Teilen. Obwohl diese Teile groß und klein sind, stehen sie in engem Zusammenhang mit der Lebenssicherheit beim Autofahren. Deshalb muss jedes Teil die höchste Qualität und Zuverlässigkeit erreichen, sogar den Idealzustand von null Mängeln. In der Automobilindustrie liegt die Bedeutung der Qualitätskontrolle von Autoteilen oft auf der Funktionalität von Teilen, die sich von den Bedürfnissen der Unterhaltungselektronik für den Lebensunterhalt der Allgemeinheit unterscheidet, d. h. für Autoteile, die wichtigste treibende Kraft des Produkts ist oft nicht [die neueste Technologie], sondern [Qualitätssicherheit]. Um eine Verbesserung der Qualitätsanforderungen zu erreichen, ist es notwendig, sich auf strenge Kontrollverfahren zur Überprüfung zu verlassen. Die aktuellen Standards der Automobilindustrie für Teilequalifizierung und Qualitätssystemstandards sind AEC (Automotive Electronics Committee). Die aktiven Teile sind für den Standard [AEC-Q100] ausgelegt. Die passiven Komponenten sind für [AEC-Q200] ausgelegt. Es regelt die Produktqualität und -zuverlässigkeit, die für passive Teile erreicht werden muss.Klassifizierung passiver Komponenten für Automobilanwendungen:Elektronische Komponenten in Automobilqualität (konform mit AEC-Q200), kommerzielle elektronische Komponenten, Komponenten zur Kraftübertragung, Sicherheitssteuerungskomponenten, Komfortkomponenten, Kommunikationskomponenten, AudiokomponentenTeileübersicht gemäß AEC-Q200-Standard:Quarzoszillator: Anwendungsbereich [Reifendruckkontrollsysteme (TPMS), Navigation, Antiblockiersystem (ABS), Airbags und Näherungssensoren, Multimedia im Fahrzeug, Unterhaltungssysteme im Fahrzeug, Objektive von Rückfahrkameras]Kfz-Dickschicht-Chipwiderstände: Anwendung [Kfz-Heiz- und Kühlsysteme, Klimaanlagen, Infotainmentsysteme, automatische Navigation, Beleuchtung, Tür- und Fensterfernbedienungsgeräte]Automobil-Sandwich-Metalloxid-Varistoren: Anwendung [Überspannungsschutz von Motorkomponenten, Überspannungsabsorption von Komponenten, Halbleiter-Überspannungsschutz]Oberflächenmontierbare Festkörper-Chip-Tantalkondensatoren für niedrige und hohe Temperaturen: Anwendung [Kraftstoffqualitätssensoren, Getriebe, Drosselklappen, Antriebssteuerungssysteme]Widerstand: SMD-Widerstand, Filmwiderstand, Thermistor, Varistor, Automotive-Vulkanisationswiderstand, Automotive-Präzisionsfilm-Wafer-Widerstandsarray, variabler WiderstandKondensatoren: SMD-Kondensatoren, Keramikkondensatoren, Aluminium-Elektrolytkondensatoren, Folienkondensatoren, DrehkondensatorenInduktivität: Verstärkte Induktivität, InduktivitätSonstiges: LED-Dünnfilm-Aluminiumoxid-Keramik-Kühlsubstrat, Ultraschallkomponenten, Überstromschutz SMD, Übertemperaturschutz SMD, Keramikresonator, elektronische Schutzkomponenten aus PolyDiode-Halbleiterkeramik für die Automobilindustrie, Netzwerkchips, Transformatoren, Netzwerkkomponenten, EMI-Interferenzunterdrücker, EMI-Interferenzfilter, selbst- WiederherstellungssicherungenBelastungstestgrad für passive Geräte und Mindesttemperaturbereich sowie typische Anwendungsfälle: KlasseTemperaturbereichPassiver GerätetypTypischer Anwendungsfall MinimumMaximal 0-50 ℃150℃Keramikwiderstand mit flachem Kern, X8R-KeramikkondensatorFür alle Autos1-40 °C125°CNetzwerkkondensatoren, Widerstände, Induktivitäten, Transformatoren, Thermistoren, Resonatoren, Quarzoszillatoren, einstellbare Widerstände, Keramikkondensatoren, TantalkondensatorenFür die meisten Motoren2-40 ℃105℃Aluminium-ElektrolytkondensatorHoher Temperaturpunkt im Cockpit3-40 ℃85℃Dünne Kondensatoren, Ferrite, Netzwerk-Tiefpassfilter, Netzwerkwiderstände, einstellbare KondensatorenDer größte Teil des Cockpitbereichs40°C70°C Nicht-automobilHinweis: Zertifizierung für Anwendungen in höherwertigen Umgebungen: Temperaturklassen müssen ein Produktlebensdauer-Worst-Case- und Anwendungsdesign aufweisen, d. h. mindestens eine Charge jedes Tests muss für Anwendungen in höherwertigen Umgebungen validiert werden.Anzahl der erforderlichen Zertifizierungstests:Lagerung bei hohen Temperaturen, Lebensdauer bei hohen Temperaturen, Temperaturzyklus, Feuchtigkeitsbeständigkeit, hohe Luftfeuchtigkeit: 77, Thermoschock: 30Anzahl der Zertifizierungsprüfungen Hinweis:Dies ist ein zerstörender Test und die Komponente kann nicht für andere Zertifizierungstests oder die Produktion wiederverwendet werden
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.