Banner
Heim

Temperaturtestkammer

Temperaturtestkammer

  • So wählen Sie die geeignete Kühlmethode für Prüfkammern aus?
    Sep 09, 2025
    Luftkühlung und Wasserkühlung sind zwei gängige Methoden zur Wärmeableitung in Kühlgeräten. Der größte Unterschied liegt in den unterschiedlichen Medien, die sie zur Ableitung der vom System erzeugten Wärme an die Umgebung verwenden: Luftkühlung nutzt Luft, Wasserkühlung Wasser. Dieser grundlegende Unterschied hat zu zahlreichen Differenzierungen hinsichtlich Installation, Nutzung, Kosten und Anwendungsszenarien geführt. 1. Luftgekühltes SystemDas Funktionsprinzip eines Luftkühlsystems besteht darin, einen Luftstrom durch einen Ventilator zu leiten und ihn über das zentrale Wärmeableitungselement – ​​den Lamellenkondensator – zu blasen. Dadurch wird die Wärme im Kondensator abgeführt und an die Umgebungsluft abgegeben. Die Installation ist sehr einfach und flexibel. Das Gerät kann einfach nach Anschluss an die Stromversorgung betrieben werden und benötigt keine zusätzlichen Einrichtungen, wodurch der Aufwand für eine Standortsanierung minimal ist. Die Kühlleistung wird maßgeblich von der Umgebungstemperatur beeinflusst. In heißen Sommern oder bei hohen Temperaturen und schlechter Belüftung sinkt die Wärmeableitungseffizienz aufgrund des geringeren Temperaturunterschieds zwischen Luft und Kondensator deutlich, was zu einer verringerten Kühlleistung des Geräts und einem erhöhten Betriebsenergieverbrauch führt. Darüber hinaus ist der Betrieb mit erheblichen Lüftergeräuschen verbunden. Die Anfangsinvestition ist in der Regel gering, und die tägliche Wartung ist relativ einfach. Die Hauptaufgabe besteht darin, die Kondensatorlamellen regelmäßig von Staub zu befreien, um eine reibungslose Belüftung zu gewährleisten. Die Hauptbetriebskosten entstehen durch den Stromverbrauch. Luftgekühlte Systeme eignen sich hervorragend für kleine und mittelgroße Geräte, Gebiete mit reichlich Strom, aber knappen Wasserressourcen oder ungünstigem Zugang zu Wasser, Labore mit kontrollierbarer Umgebungstemperatur sowie Projekte mit begrenztem Budget oder solche, die einen einfachen und schnellen Installationsprozess bevorzugen. 2. Wassergekühltes SystemDas Funktionsprinzip eines Wasserkühlsystems besteht darin, dass zirkulierendes Wasser durch einen speziellen wassergekühlten Kondensator fließt, um die Wärme des Systems aufzunehmen und abzuleiten. Das erwärmte Wasser wird üblicherweise zur Kühlung in einen Kühlturm im Freien geleitet und anschließend wiederverwendet. Die Installation ist komplex und erfordert ein komplettes externes Wassersystem, einschließlich Kühltürmen, Wasserpumpen, Wasserleitungsnetzen und Wasseraufbereitungsanlagen. Dies legt nicht nur den Installationsort der Geräte fest, sondern stellt auch hohe Anforderungen an die Standortplanung und Infrastruktur. Die Wärmeableitungsleistung des Systems ist sehr stabil und wird von Änderungen der Umgebungstemperatur kaum beeinflusst. Gleichzeitig sind die Betriebsgeräusche in der Nähe des Gerätegehäuses relativ gering. Die Anfangsinvestition ist hoch. Neben dem Stromverbrauch entstehen weitere Kosten, beispielsweise durch den kontinuierlichen Wasserverbrauch im täglichen Betrieb. Die Wartung ist professioneller und komplexer und muss durchgeführt werden, um Kalkablagerungen, Korrosion und mikrobiellem Wachstum vorzubeugen. Wassergekühlte Systeme eignen sich vor allem für große, leistungsstarke Industriegeräte, Werkstätten mit hohen Umgebungstemperaturen oder schlechten Belüftungsbedingungen sowie Situationen, in denen eine extrem hohe Temperaturstabilität und Kühleffizienz erforderlich sind. Bei der Entscheidung zwischen Luft- und Wasserkühlung geht es nicht darum, deren absolute Überlegenheit oder Unterlegenheit zu beurteilen, sondern die Lösung zu finden, die den eigenen Bedingungen am besten entspricht. Die Entscheidung sollte auf folgenden Überlegungen beruhen: Erstens wird bei großen Hochleistungsgeräten in der Regel eine Wasserkühlung bevorzugt, um eine stabile Leistung zu erzielen. Gleichzeitig müssen das geografische Klima des Labors (ob es heiß ist), die Wasserversorgungsbedingungen, der Installationsraum und die Belüftungsbedingungen berücksichtigt werden. Zweitens ist Luftkühlung eine geeignete Wahl, wenn eine relativ geringe Anfangsinvestition wichtig ist. Liegt der Schwerpunkt auf langfristiger Betriebsenergieeffizienz und Stabilität und sind die relativ hohen Anschaffungskosten nicht scheu, bietet Wasserkühlung die größeren Vorteile. Schließlich ist zu berücksichtigen, ob man über die fachlichen Fähigkeiten verfügt, regelmäßige Wartungsarbeiten an komplexen Wassersystemen durchzuführen.
    Mehr lesen
  • Funktionsprinzip des Lab Companion Vakuumofens Funktionsprinzip des Lab Companion Vakuumofens
    Sep 02, 2025
    Der Lab Companion Vakuumofen ist ein Präzisionsgerät zum Trocknen von Materialien unter Niederdruckbedingungen. Sein Funktionsprinzip basiert auf einem zentralen wissenschaftlichen Prinzip: Im Vakuum sinkt der Siedepunkt einer Flüssigkeit deutlich. Der Arbeitsprozess lässt sich in drei Hauptschritte unterteilen: 1. Vakuumerzeugung: Durch kontinuierliches Absaugen von Luft aus der Ofenkammer mittels einer Vakuumpumpe wird der Innendruck auf ein Niveau weit unter dem atmosphärischen Druck (typischerweise bis zu 10 Pa oder sogar höhere Vakuumgrade) gesenkt. Dadurch werden zwei Ziele erreicht: Erstens wird der Sauerstoffgehalt im Ofenraum deutlich reduziert, wodurch die Oxidation des Materials während des Erhitzungsprozesses verhindert wird. Zweitens werden die Voraussetzungen für den zentralen physikalischen Prozess geschaffen: das Niedertemperatursieden.2. Heizung liefert Energie: Sobald das Vakuum hergestellt ist, beginnt das Heizsystem (üblicherweise mit elektrischen Heizdrähten oder Heizplatten) zu arbeiten und versorgt die Materialien in der Kammer mit Wärmeenergie. Aufgrund des extrem niedrigen Innendrucks sinkt der Siedepunkt der im Material enthaltenen Feuchtigkeit oder anderer Lösungsmittel stark. Beispielsweise kann bei einem Vakuum von -0,085 MPa der Siedepunkt von Wasser auf etwa 45 °C gesenkt werden. Das bedeutet, dass das Material nicht auf die üblichen 100 °C erhitzt werden muss und die Feuchtigkeit im Inneren bei niedrigeren Temperaturen schnell verdampfen kann.3. Dampfentfernung: Der durch die Verdampfung entstehende Wasserdampf oder andere Lösungsmitteldämpfe werden von der Oberfläche und dem Inneren des Materials freigesetzt. Aufgrund des Druckunterschieds im Hohlraum diffundieren diese Dämpfe schnell und werden kontinuierlich von der Vakuumpumpe abgesaugt und anschließend in die Umgebung abgegeben. Dieser Prozess läuft kontinuierlich ab, um eine trockene Umgebung zu gewährleisten und eine erneute Kondensation des Dampfes im Hohlraum zu verhindern. Dadurch wird die Trocknungsreaktion kontinuierlich und effizient zur Dehydratation vorangetrieben. Aufgrund ihrer Eigenschaft, bei niedrigen Temperaturen und mit hoher Effizienz zu trocknen, werden Vakuumöfen häufig in den Bereichen Pharmazie, Chemie, Elektronik, Lebensmittel und Materialwissenschaften eingesetzt und eignen sich besonders für die Verarbeitung wertvoller, empfindlicher oder mit herkömmlichen Methoden schwer zu trocknender Materialien.
    Mehr lesen
  • Einsatz von Hoch- und Niedertemperaturprüfkammern in der Forschung an neuen Energiematerialien Einsatz von Hoch- und Niedertemperaturprüfkammern in der Forschung an neuen Energiematerialien
    Aug 30, 2025
    1. Lithium-Ionen-Batterien: In allen F&E-Phasen von Lithium-Ionen-Batterien, von den Materialien über die Zellen bis hin zu den Modulen, werden Hoch- und Niedertemperaturtests durchgeführt. 2. Materialebene: Bewerten Sie die grundlegenden physikalischen und chemischen Eigenschaften von Grundmaterialien wie positiven und negativen Elektrodenmaterialien, Elektrolyten und Separatoren bei unterschiedlichen Temperaturen. Beispielsweise können Sie das Lithium-Plating-Risiko von Anodenmaterialien bei niedrigen Temperaturen testen oder die thermische Schrumpfrate (MSDS) von Separatoren bei hohen Temperaturen untersuchen. 3. Zellebene: Simulieren Sie den kalten Winter in der Tieftemperaturzone (z. B. -40 °C bis -20 °C), testen Sie den Startvorgang, die Entladekapazität und die Ratenleistung der Batterie bei niedrigen Temperaturen und liefern Sie Daten zur Verbesserung der Leistung bei niedrigen Temperaturen. Zyklische Lade- und Entladetests werden bei hohen Temperaturen (z. B. 45 °C und 60 °C) durchgeführt, um die Alterung zu beschleunigen und die langfristige Lebensdauer und Kapazitätserhaltungsrate der Batterie vorherzusagen. 4. Brennstoffzellen: Protonenaustauschmembran-Brennstoffzellen (PEMFC) stellen extrem hohe Anforderungen an den Umgang mit Wasser und Wärme. Die Kaltstartfähigkeit ist ein entscheidender technischer Engpass für die Kommerzialisierung von Brennstoffzellen. Die Testkammer simuliert eine Umgebung unter dem Gefrierpunkt (z. B. -30 °C), um zu testen, ob das System nach dem Einfrieren erfolgreich gestartet werden kann, und um die mechanischen Schäden durch Eiskristalle an der katalytischen Schicht und der Protonenaustauschmembran zu untersuchen. 5. Photovoltaikmaterialien: Solarmodule müssen im Außenbereich über 25 Jahre lang zuverlässig funktionieren und den harten Belastungen bei Tag und Nacht sowie in allen vier Jahreszeiten standhalten. Durch die Simulation von Temperaturunterschieden zwischen Tag und Nacht (z. B. 200 Zyklen von -40 °C bis 85 °C) können die thermische Ermüdung des Verbindungslötbandes der Batteriezellen, die Alterung und Vergilbung der Verkapselungsmaterialien (EVA/POE) sowie die Verbindungszuverlässigkeit zwischen verschiedenen laminierten Materialien getestet werden, um Delamination und Ausfälle zu verhindern.   Moderne Hoch- und Tieftemperaturprüfkammern sind nicht länger einfache Temperaturwechselkammern, sondern intelligente Testplattformen mit mehreren Funktionen. Die fortschrittliche Testkammer ist mit Beobachtungsfenstern und Testlöchern ausgestattet, sodass Forscher die Proben während Temperaturänderungen in Echtzeit überwachen können.
    Mehr lesen
  • Auswahl des Aufstellungsortes der Schnell-Temperatur-Wechsel-Prüfkammer Auswahl des Aufstellungsortes der Schnell-Temperatur-Wechsel-Prüfkammer
    Jun 27, 2025
    Auswahl des Aufstellungsortes der Schnell-Temperatur-Wechsel-Prüfkammer:Der Abstand zur angrenzenden Wand kann die Rolle und die Eigenschaften der Klimaprüfkammer optimal ausspielen. Es sollten eine Langzeittemperatur von 15 bis 45 °C und eine relative Luftfeuchtigkeit von über 86 % gewählt werden.Die Betriebstemperatur am Aufstellungsort darf sich nicht wesentlich ändern. Die Installation sollte auf einer ebenen Fläche erfolgen (benutzen Sie während der Installation eine Wasserwaage, um das Niveau auf der Straße zu bestimmen).Es sollte an einem Ort ohne Sonneneinstrahlung installiert werden. Es sollte an einem Ort mit ausgezeichneter natürlicher Belüftung installiert werden.Es sollte in Bereichen installiert werden, in denen brennbare Materialien, explosive Produkte und Hochtemperatur-Wärmequellen vermieden werden.Es sollte an einem Ort mit weniger Staub installiert werden.Installieren Sie es möglichst nahe am Schaltnetzteil des Stromversorgungssystems.
    Mehr lesen
  • Was soll ich tun, wenn die Hoch- und Niedertemperaturprüfkammer Probleme hat? Was soll ich tun, wenn die Hoch- und Niedertemperaturprüfkammer Probleme hat?
    Jun 23, 2025
    Hoch- und Niedertemperaturprüfkammer Bei der Verwendung können verschiedene Probleme auftreten. Nachfolgend finden Sie eine Zusammenfassung möglicher Fehler und ihrer Ursachen aus verschiedenen Perspektiven:1. KernsystemfehlerTemperatur außer KontrolleGrund: Die PID-Regelparameter sind nicht im Gleichgewicht, die Umgebungstemperatur überschreitet den Auslegungsbereich des Geräts, Temperaturstörungen in mehreren Zonen.Fall: In einer Werkstatt mit Sonderumgebung kommt es aufgrund der hohen Außentemperatur zu einer Überlastung des Kühlsystems, was zu einer Temperaturdrift führt.Die Luftfeuchtigkeit ist anormalGrund: Eine schlechte Wasserqualität bei der Befeuchtung führt zu Kalkablagerungen und Düsenverstopfungen, zum Ausfall der piezoelektrischen Platte des Ultraschallbefeuchters und zu einer unvollständigen Regeneration des Entfeuchtungs-Trockenmittels.Besonderes Phänomen: Beim Test mit hoher Luftfeuchtigkeit kommt es zu einer Rückkondensation, die dazu führt, dass die tatsächliche Luftfeuchtigkeit in der Box niedriger ist als der eingestellte Wert.2. Mechanische und strukturelle ProblemeDer Luftstrom ist ungeordnetLeistung: Im Probenbereich herrscht ein Temperaturgradient von über 3 °C.Grundursache: Das kundenspezifische Probengestell veränderte den ursprünglich konzipierten Luftkanal und die Ansammlung von Schmutz auf den Radialventilatorflügeln führte zur Zerstörung des dynamischen Gleichgewichts. DichtungsfehlerNeuer Fehler: Die Magnetkraft der elektromagnetischen Türdichtung lässt bei niedrigen Temperaturen nach und der Silikon-Dichtungsstreifen wird nach -70 °C spröde und reißt.3. Elektrik und SteuerungIntelligenter SteuerungsfehlerSoftwareebene: Nach dem Firmware-Upgrade tritt ein Fehler bei der Einstellung der Temperatur-Totzone auf und der Überlauf der historischen Daten führt zum Absturz des Programms.Hardwareebene: Ein Ausfall des Halbleiterrelais SSR führt zu kontinuierlicher Erwärmung und die Buskommunikation ist elektromagnetischen Störungen durch den Wechselrichter ausgesetzt.SicherheitslückenVersteckte Gefahren: der synchrone Ausfall des dreifachen Temperaturschutzrelais und der Fehlalarm durch den Ablauf der Kalibrierung des Kältemitteldetektors.4. Herausforderungen besonderer ArbeitsbedingungenSpezifischer TemperaturschockProblem: Bei einer Umwandlung von -40 °C auf +150 °C kommt es zu einer schnellen Spannungsrissbildung an der Schweißnaht des Verdampfers, der Unterschied im Wärmeausdehnungskoeffizienten führt zum Versagen der Dichtung des Beobachtungsfensters.LangzeitbetriebsdämpfungLeistungsabfall: Nach 2000 Stunden Dauerbetrieb führt der Verschleiß der Kompressorventilplatte zu einer Verringerung der Kälteleistung um 15 % und zu einer Abweichung des Widerstandswerts des Keramikheizrohrs.5. Auswirkungen auf Umwelt und InstandhaltungInfrastrukturanpassungFall: Die Leistungsschwankungen des PTC-Heizgeräts, die durch Schwankungen der Versorgungsspannung und den Wasserschlageffekt des Kühlwassersystems verursacht wurden, beschädigten den Plattenwärmetauscher.Blinde Flecken bei der vorbeugenden WartungLektion: Das Ignorieren des Überdrucks der Box führt dazu, dass Wasser in die Lagerkammer eindringt und sich Biofilm bildet und das Kondensatablaufrohr verstopft.6. Schwachstellen neuer TechnologienNeue KältemittelanwendungHerausforderungen: Probleme mit der Systemölkompatibilität, nachdem R448A R404A ersetzt hat, und Hochdruckdichtungsprobleme bei unterkritischen CO₂-Kältesystemen.Risiken der IoT-IntegrationFehler: Das Fernsteuerungsprotokoll wird böswillig angegriffen, was zu Programmmanipulationen und Cloud-Speicherfehlern führt, was wiederum den Verlust der Testbeweiskette zur Folge hat.StrategieempfehlungenIntelligente Diagnose: Konfigurieren Sie den Schwingungsanalysator, um den Ausfall des Kompressorlagers vorherzusagen, und verwenden Sie eine Infrarot-Wärmebildkamera, um die elektrischen Verbindungspunkte regelmäßig zu scannen.Zuverlässiges Design: Wichtige Komponenten wie der Verdampfer bestehen aus Edelstahl SUS316L, um die Korrosionsbeständigkeit zu verbessern, und dem Steuerungssystem werden redundante Temperaturregelmodule hinzugefügt.Wartungsinnovation: Implementieren Sie einen dynamischen Wartungsplan basierend auf den Betriebsstunden und richten Sie ein jährliches System zur Prüfung der Kältemittelreinheit ein.Die Lösungen für diese Probleme müssen in Kombination mit dem spezifischen Gerätemodell, der Einsatzumgebung und der Wartungshistorie analysiert werden. Es wird empfohlen, einen kollaborativen Wartungsmechanismus einzurichten, der den Gerätehersteller, externe Prüfinstitute und technische Benutzerteams einbezieht. Für wichtige Testobjekte wird empfohlen, ein Hot-Standby-System mit zwei Maschinen zu konfigurieren, um die Kontinuität der Tests zu gewährleisten.
    Mehr lesen
  • Welche Lieferstandards gelten für Lab Companion? Welche Lieferstandards gelten für Lab Companion?
    Jun 23, 2025
    (1) Installation und Inbetriebnahme der GeräteVor-Ort-Service: Technisches Personal liefert die Waren kostenlos und übernimmt die mechanische Montage, die elektrische Verkabelung und die Fehlersuche. Die Fehlersuchparameter müssen den in der technischen Vereinbarung mit dem Kunden festgelegten Werten wie Temperatur, Luftfeuchtigkeit, Salznebelablagerung und anderen Indikatoren entsprechen.Abnahmekriterien: Legen Sie einen Messbericht eines Drittanbieters vor. Nicht qualifizierte Geräte müssen zurückgegeben oder direkt ersetzt werden. Beispielsweise muss die Regentestbox eine 100%ige Abnahme bestehen.(2) KundenschulungssystemBedienungsschulung: umfasst das Starten und Stoppen der Ausrüstung, die Programmeinstellung und die tägliche Wartung, angepasst an verschiedene Benutzerszenarien wie Qualitätsprüfinstitute und Automobilunternehmen.Umfassende Wartungsschulung: einschließlich Fehlerdiagnose (z. B. Fehlerbehebung des Feuchtigkeitssystems in einer Hoch- und Niedertemperatur- und Feuchtigkeitsprüfkammer) und Austausch von Ersatzteilen, um die Fähigkeit der Kunden zur selbstständigen Wartung zu verbessern.(3) Technischer Support und ReaktionSofortige Reaktion: Reagieren Sie innerhalb von 15 Minuten auf Reparaturanfragen und beheben Sie Routinefehler innerhalb von 48 Stunden (Verhandlungen mit abgelegenen Gebieten).Ferndiagnose: Lokalisieren Sie das Problem (z. B. eine abnormale Staubkonzentration in der Sandprüfkammer) schnell mithilfe einer Videoanleitung oder einer Fernzugriffssoftware.(4) Ersatzteilversorgung und WartungErstellen Sie einen Ersatzteilplan, geben Sie der Versorgung mit Verschleißteilen durch Kooperationseinheiten (wie z. B. China Railway Inspection and Certification Center, China Electronics Technology Group) Vorrang und reduzieren Sie Ausfallzeiten.Nicht manuelle Schäden sind während der Garantiezeit kostenlos und kostenpflichtige Dienste werden nach der Garantiezeit mit transparenten Gebühren bereitgestellt.
    Mehr lesen
  • Was ist im Sommer bei der Nutzung der Eiswasserschlagprüfkammer zu beachten? Was ist im Sommer bei der Nutzung der Eiswasserschlagprüfkammer zu beachten?
    Jun 16, 2025
    Wenn die Guangdong Hongzhan Eiswasser-Aufprallprüfkammer im Sommer verwendet wird, sollte den folgenden Punkten besondere Aufmerksamkeit geschenkt werden, um den stabilen Betrieb der Ausrüstung und die Genauigkeit der Testergebnisse sicherzustellen:1. Umgebungs- und Wärmeableitungsmanagement Verbessern Sie Belüftung und Wärmeableitung. Hohe Temperaturen im Sommer können die Wärmeableitungseffizienz des Geräts beeinträchtigen. Halten Sie mindestens 10 cm Platz um das Gerät herum frei, um die Luftzirkulation zu fördern. Bei Geräten mit Luftkühlung sollte die Kondensatoroberfläche regelmäßig von Staub befreit werden, um eine schlechte Wärmeableitung und eine Überhitzung des Kompressors zu vermeiden. Kontrollieren Sie Umgebungstemperatur und -feuchtigkeit. Vermeiden Sie direkte Sonneneinstrahlung. Es wird empfohlen, die Labortemperatur bei 25 ± 5 °C und die Luftfeuchtigkeit unter 85 % zu halten. Hohe Temperaturen und hohe Luftfeuchtigkeit können die Bildung von Frost oder Kondenswasser auf dem Gerät beschleunigen. Daher sind verstärkte Entfeuchtungsmaßnahmen erforderlich.2. Wartung der Kälteanlage Wasserqualität und Tankmanagement: Im Sommer vermehren sich Bakterien leicht. Verwenden Sie daher deionisiertes oder reines Wasser, um Kalkablagerungen und verstopfte Rohre zu vermeiden. Es wird empfohlen, das Tankwasser alle drei Tage zu wechseln und den Tank vor längerer Nichtbenutzung zu leeren und zu reinigen. Überwachung der Kühlleistung: Hohe Umgebungstemperaturen können zu einer Überlastung des Kühlsystems führen. Der Zustand des Kompressoröls sollte regelmäßig überprüft werden, um ausreichend Kältemittel sicherzustellen. Überschreitet die Wassertemperatur den eingestellten Wert (z. B. 0–4 °C), sollte die Maschine zur Fehlerbehebung sofort gestoppt werden.3. Frosting- und Auftaubehandlung Verhindern Sie Frostbefall. Bei hoher Luftfeuchtigkeit im Sommer kann sich die Frostrate im Inneren des Geräts beschleunigen. Es wird empfohlen, nach 10 Zyklen einen manuellen Abtauvorgang durchzuführen: Stellen Sie die Temperatur auf 30 °C ein und halten Sie sie 30 Minuten lang. Lassen Sie dann das Wasser ab, um die Eiskristalle auf der Verdampferoberfläche zu entfernen.Optimieren Sie das Testintervall, um kontinuierliche Langzeittests bei niedrigen Temperaturen zu vermeiden. Es wird empfohlen, zwischen Hochtemperatur (z. B. 160 °C) und Eiswasser-Schockzyklus 15 Minuten Pufferzeit einzuplanen, um die Auswirkungen der thermischen Belastung auf das Gerät zu reduzieren.4. Anpassung der Betriebsspezifikationen Optimierung der Parametereinstellungen: Je nach den Eigenschaften der Sommerumgebung kann die normale Temperaturwiederherstellungsphase entsprechend verkürzt werden (der Referenzstandard besteht darin, den Temperaturwechsel innerhalb von 20 Sekunden abzuschließen). Dabei muss jedoch sichergestellt werden, dass die Anforderungen der Normen GB/T 2423.1 oder ISO16750-4 erfüllt werden. Der Sicherheitsschutz sollte verstärkt werden. Während des Betriebs sollten Frostschutzhandschuhe und eine Schutzbrille getragen werden, um ein Anhaften der Hände an kalten Teilen durch Schwitzen zu vermeiden. Vor dem Öffnen der Tür nach dem Hochtemperaturtest sollte sichergestellt werden, dass die Temperatur im Inneren der Box unter 50 °C liegt, um Verbrühungen durch heißen Dampf zu vermeiden.5. Vorbereitung auf Notfall- und Langzeitstillstände Fehlerreaktion: Wenn das Gerät den Alarm E01 (Temperatur außerhalb des Toleranzbereichs) oder E02 (Wasserstand anormal) anzeigt, sollten Sie sofort die Stromversorgung unterbrechen und den technischen Support des Herstellers kontaktieren. Demontieren Sie die Kältemittelleitung nicht selbst. Langzeitschutz: Wenn das Gerät länger als 7 Tage nicht benutzt wird, sollte der Wassertank geleert, die Stromversorgung unterbrochen und die Staubschutzkappe abgedeckt werden. Gleichzeitig sollte die Stromversorgung alle halben Monate für eine Stunde eingeschaltet bleiben, um die Platine trocken zu halten. Durch die oben genannten Maßnahmen können die Auswirkungen hoher Temperaturen und Feuchtigkeit im Sommer auf die Eiswasser-Schockprüfkammer effektiv reduziert werden, um die Zuverlässigkeit der Testdaten und die Lebensdauer der Geräte zu gewährleisten. Die spezifischen Betriebsdetails sollten entsprechend dem Gerätehandbuch und den tatsächlichen Arbeitsbedingungen angepasst werden.
    Mehr lesen
  • Wartungsmethoden für Prüfkammern mit konstanter Temperatur und Luftfeuchtigkeit Wartungsmethoden für Prüfkammern mit konstanter Temperatur und Luftfeuchtigkeit
    Jun 13, 2025
    1. Am Kondensator haftender Staub kann dazu führen, dass der Hochdruckschalter des Kompressors auslöst und Fehlalarme auslöst. Daher kann Staub, der am Kühlgitter des Kondensators anhaftet, monatlich mit einem Staubsauger entfernt werden. Alternativ können Sie ihn nach dem Einschalten der Maschine mit einer Bürste mit harten Borsten oder mit einer Hochdruckluftdüse abblasen.2. Der Bereich um die Maschine und der Boden darunter sollten stets sauber gehalten werden, um zu verhindern, dass große Mengen Staub in das Gerät gesaugt werden oder die Leistung des Geräts beeinträchtigt wird und Unfälle verursacht.3. Berühren Sie beim Öffnen oder Schließen der Tür oder beim Entnehmen von Proben aus der Prüfkammer nicht den Dichtungsstreifen an der Tür.4. Das Herzstück der Prüfkammer für konstante Temperatur und Luftfeuchtigkeit – das Kühlsystem – sollte einmal jährlich überprüft werden. Überprüfen Sie die Kupferrohre sowie alle Verbindungen und Schnittstellen auf Undichtigkeiten. Informieren Sie gegebenenfalls den Hersteller.5. Luftbefeuchter und Wassertank sollten regelmäßig gereinigt werden, um Kalkablagerungen und eine Beeinträchtigung der Dampfabgabe zu vermeiden. Reinigen Sie sie nach jedem Test. Rechtzeitiges Entkalken verlängert die Lebensdauer des Befeuchterschlauchs und sorgt für einen reibungslosen Wasserfluss. Verwenden Sie zum Reinigen eine Kupferbürste und spülen Sie anschließend mit Wasser nach.6. Der Verteilerraum sollte mehr als einmal im Jahr gereinigt und überprüft werden. Lose Knoten können die gesamte Anlage in einen gefährlichen Betriebszustand versetzen, Komponenten durchbrennen, Brände und Alarme verursachen und Leben gefährden.7. Die Dochte der Trocken- und Nassbirne sollten regelmäßig überprüft werden. Ersetzen Sie sie umgehend, wenn sie hart oder schmutzig werden. Es wird empfohlen, sie alle drei Monate auszutauschen.8. Inspektion und Wartung des Wasserkreislaufs. Die Wasserleitungen im Wasserkreislauf neigen zu Verstopfungen und Leckagen. Überprüfen Sie regelmäßig, ob Lecks oder Verstopfungen vorhanden sind. Beseitigen Sie diese umgehend oder benachrichtigen Sie den Hersteller.
    Mehr lesen
  • Zwei Gründe, warum die Prüfkammer mit konstanter Temperatur und Luftfeuchtigkeit nicht kühlt Zwei Gründe, warum die Prüfkammer mit konstanter Temperatur und Luftfeuchtigkeit nicht kühlt
    Jun 10, 2025
    Ein Grund 1. Da die Temperatur der Prüfkammer mit konstanter Temperatur und Luftfeuchtigkeit nicht aufrechterhalten werden kann, beobachten Sie, ob der Kühlkompressor starten kann, wenn die Prüfkammer läuft, und ob der Kompressor starten kann, wenn die Umweltprüfausrüstung läuft. Dies zeigt an, dass der Stromkreis von der Hauptstromversorgung zu jedem Kompressor normal ist und das elektrische System kein Problem aufweist.2. Das elektrische System ist fehlerfrei. Überprüfen Sie weiterhin das Kühlsystem. Überprüfen Sie zunächst, ob der Abgas- und Saugdruck des Niedertemperaturkompressors (R23) der beiden Kühlaggregate unter dem Normalwert liegt und ob der Saugdruck im Vakuumzustand liegt. Dies deutet darauf hin, dass die Kühlleistung des Hauptkühlaggregats unzureichend ist.3. Berühren Sie das Auspuffrohr und das Saugrohr des R23-Kompressors mit Ihrer Hand und stellen Sie fest, dass die Temperatur des Auspuffrohrs nicht hoch und die Temperatur des Saugrohrs nicht niedrig ist (kein Frost), was auch darauf hinweist, dass das R23-Kältemittel im Host nicht ausreicht.Ein weiterer Grund: 1. Die Fehlerursache wurde nicht ermittelt und eine weitere Bestätigung erfolgt in Kombination mit dem Steuerungsprozess der Prüfkammer für konstante Temperatur und Luftfeuchtigkeit. Die Prüfkammer verfügt über zwei Sätze Kühleinheiten.Eines ist das Hauptgerät, das andere das Zusatzgerät. Bei hoher Kühlleistung laufen beide Geräte zu Beginn der Temperaturhaltephase gleichzeitig. Sobald sich die Temperatur stabilisiert, stoppt das Zusatzgerät, und das Hauptgerät hält die Temperatur. Tritt R23-Kältemittel aus dem Hauptgerät aus, verringert sich dessen Kühlleistung erheblich. Während des Kühlvorgangs arbeiten beide Geräte gleichzeitig und gewährleisten so stabile Temperaturen und eine allmähliche Abnahme der Kühlleistung. Stoppt das Zusatzgerät in der Isolationsphase, verliert das Hauptgerät seine Kühlfunktion, wodurch die Luft in der Prüfkammer langsam ansteigt. Erreicht die Temperatur einen bestimmten Wert, aktiviert die Steuerung das Zusatzgerät zur Abkühlung, woraufhin es erneut stoppt. Als Ursache für den Produktionsausfall wurde ein Niedertemperatur-Kältemittelleck (R23) aus dem Hauptgerät identifiziert. Bei der Dichtheitsprüfung des Kühlsystems wurde ein etwa 1 cm langer Riss am Ventilschaft des Heißgas-Bypass-Magnetventils festgestellt. Nach dem Austausch des Magnetventils und dem erneuten Befüllen des Systems mit Kältemittel kehrte das System zum Normalbetrieb zurück. Diese Analyse zeigt, dass die Fehlerdiagnose schrittweise erfolgt. Sie beginnt mit den äußeren Aspekten und arbeitet sich nach innen vor, wobei der Schwerpunkt auf der Elektrizität und schließlich auf der Kühlung liegt. Für eine genaue Fehlerdiagnose ist ein gründliches Verständnis der Prinzipien und Betriebsabläufe der Prüfkammer unerlässlich.
    Mehr lesen
  • Verwenden Sie Bedingungen mit hoher und niedriger Temperatur und Niederdruck -Testkammer
    Feb 26, 2025
    Zustand eins: Umweltbedingung  1. Temperatur: 15 ℃ ~ 35 ℃;  2. Relative Luftfeuchtigkeit: 85%nicht überschreiten;  3. Atmosphärter Druck: 80 kPa ~ 106 kPa4. Es gibt keine starke Schwingung oder korrosives Gas;5. Keine direkte Sonneneinstrahlung oder direkte Strahlung aus anderen Kalt- oder Wärmequellen;6. Es gibt keinen starken Luftstrom, und wenn die umgebende Luft zum Fließen gezwungen werden muss, sollte der Luftstrom nicht direkt auf die Ausrüstung geblasen werden.7. Kein Magnetfeld umgeben Testkammer Das kann die Störungsschaltung der Störung beeinträchtigen.8. Es gibt keine hohe Konzentration an Staub und korrosiven Substanzen. Zustand zwei: Stromversorgungszustand1. Wechselspannung: 220 V ± 22 V oder 380 V ± 38 V;2. Frequenz: 50 Hz ± 0,5 Hz.  Nutzungsbedingungen drei: WasserversorgungsbedingungenEs wird empfohlen, Leitungswasser oder zirkulierendes Wasser zu verwenden, das die folgenden Bedingungen erfüllt: 1. Wassertemperatur: nicht mehr als 30 ℃; 2. Wasserdruck: 0,1 MPa bis 0,3 MPa; 3. Wasserqualität: entspricht den industriellen Wasserstandards.  Nutzungsbedingungen vier: Last für die Testkammer Die Testkammerbelastung muss gleichzeitig die folgenden Bedingungen erfüllen: 1. Gesamtmasse der Last: Die Masse der Last pro Kubikmeter des Arbeitsbereichsvolumens sollte 80 kg nicht überschreiten. 2. Gesamtlastvolumen: Das Gesamtvolumen der Last sollte 1/5 des Arbeitsbereichsvolumens nicht überschreiten. 3.. Die Last darf den Luftstrom nicht behindern.  
    Mehr lesen

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns