Das Messprinzip des Hygrometers in der Testkammer für hohe und niedrige Temperaturen
Temperatur und Luftfeuchtigkeit sind der Prozentsatz der in einem Gas (normalerweise Luft) enthaltenen Wasserdampfmenge (Dampfdruck) und die Menge an gesättigtem Wasserdampf (Sättigungsdampfdruck) im gleichen Fall wie die Luft, ausgedrückt in RH %. Die Luftfeuchtigkeit hatte schon vor langer Zeit einen engen Zusammenhang mit dem Leben, es war jedoch schwierig, sie zu quantifizieren. Der Ausdruck für Luftfeuchtigkeit ist Feuchtigkeit, relative Luftfeuchtigkeit, Taupunkt, Verhältnis von Feuchtigkeit zu trockenem Gas (Gewicht oder Volumen) usw.
Feuchtemessmethode Hygrograph Feuchtemessung nach dem Prinzip der Zwanziger- oder Dreißigerteilung. Aber die Messung der Luftfeuchtigkeit ist immer eines der schwierigsten Probleme im Bereich der weltweiten Messung. Ein scheinbar einfacher Mengenwert erfordert im Detail eine ziemlich komplexe physikalisch-chemische theoretische Analyse und Berechnung. Anfänger ignorieren möglicherweise viele Faktoren, auf die bei der Feuchtigkeitsmessung geachtet werden muss, und beeinträchtigen somit den sinnvollen Einsatz von Sensoren.
Gängige Methoden zur Feuchtigkeitsmessung sind: Taupunktmethode, Nass- und Trockenkugelmethode und elektronische Sensormethode, dynamische Methode (Doppeldruckmethode, Doppeltemperaturmethode, Shunt-Methode), statische Methode (Methode mit gesättigtem Salz, Schwefelsäuremethode)
1, Taupunktmethode Hygrograph: dient zur Messung der Temperatur, wenn die feuchte Luft die Sättigung erreicht, ist ein direktes Ergebnis der Thermodynamik, hoher Genauigkeit und großem Messbereich. Das Präzisions-Taupunktmessgerät zur Messung kann eine Genauigkeit von ±0,2 °C oder sogar noch höher erreichen. Allerdings ist das Kaltspiegel-Taupunktmessgerät mit modernem optoelektrischen Prinzip teuer und wird oft mit Standard-Feuchtegeneratoren verwendet.
2, Nass- und Trockenkugelhygrometer: Dies ist eine Nassmessmethode, die im 18. Jahrhundert erfunden wurde. Es hat eine lange Geschichte und ist weit verbreitet. Die Nass- und Trockenkugelmethode ist eine indirekte Methode, die den Feuchtigkeitswert aus der Nass- und Trockenkugelgleichung umwandelt. Diese Gleichung ist an Bedingungen geknüpft: Das heißt, die Windgeschwindigkeit in der Nähe der Feuchtkugel muss mehr als 2,5 m/s erreichen. Das übliche Nass- und Trockenkugelthermometer vereinfacht diesen Zustand, sodass seine Genauigkeit nur 5 bis 7 % relative Luftfeuchtigkeit beträgt und das Nass- und Trockenkugelthermometer nicht zur statischen Methode gehört. Denken Sie nicht einfach daran, die Messgenauigkeit der beiden Thermometer zu verbessern gleichbedeutend mit einer Verbesserung der Messgenauigkeit des Hygrometers.
3, Hygrometer mit elektronischer Feuchtigkeitssensormethode: Elektronische Feuchtigkeitssensorprodukte und Feuchtigkeitsmessung gehören zu der Branche, die in den 1990er Jahren in den letzten Jahren im In- und Ausland auf dem Gebiet der Forschung und Entwicklung von Feuchtigkeitssensoren große Fortschritte gemacht hat. Feuchtesensoren entwickeln sich rasant von einfachen Feuchtesensoren hin zu integrierten, intelligenten Multiparameter-Erkennungen und schaffen damit günstige Voraussetzungen für die Entwicklung einer neuen Generation von Feuchtemess- und Regelsystemen und heben die Feuchtemesstechnik auf ein neues Niveau.
4, Doppeldruckmethode, Doppeltemperatur-Hygrometer: basiert auf dem thermodynamischen P-, V-, T-Balance-Prinzip, die Balancezeit ist länger, die Shunt-Methode basiert auf der präzisen Mischung von Feuchtigkeit und trockener Luft. Aufgrund der Verwendung moderner Mess- und Steuermittel können diese Geräte recht präzise sein, aber aufgrund der komplexen Ausrüstung, der teuren und zeitaufwändigen Bedienung, die hauptsächlich als Standardmessung verwendet wird, kann ihre Messgenauigkeit ±2 % rF oder mehr erreichen.
5, Statische Methode des gesättigten Salzhygrometers: ist eine gängige Methode zur Feuchtigkeitsmessung, einfach und unkompliziert. Allerdings stellt die gesättigte Salzmethode strenge Anforderungen an das Gleichgewicht der zwei Phasen von Flüssigkeit und Gas sowie hohe Anforderungen an die Stabilität der Umgebungstemperatur. Der Ausgleich dauert lange, und an Orten mit niedriger Luftfeuchtigkeit dauert es sogar noch länger. Besonders wenn der Feuchtigkeitsunterschied zwischen Innenraum und Flasche groß ist, muss er bei jedem Öffnen 6 bis 8 Stunden lang ausgeglichen werden.
Anzeige- und Heizsystem der Temperatur- und Feuchtigkeitstestkammer
Die Anzeige- und Bedienoberfläche von Temperatur- und Feuchtigkeitsprüfkammer ist intuitiv und klar, das Light-Touch-Auswahlmenü ist einfach und benutzerfreundlich und die Leistung ist stabil und zuverlässig. Flexible Programmsteuerung, um Benutzern stabile Leistung, flexible Steuerung und kostengünstige Produkte zu bieten. Der Eingangskanal und Ausgangskanal können beliebig erweitert werden. Es handelt sich um ein Testgerät für die Luftfahrt, Automobilindustrie, Haushaltsgeräte, wissenschaftliche Forschung und andere Bereiche, das zum Testen und Bestimmen der Parameter und Leistung von elektrischen, elektronischen und anderen Produkten und Materialien nach Temperaturänderungen in der Umgebung bei hohen Temperaturen, niedrigen Temperaturen und wechselnden Temperaturen verwendet wird und Feuchtigkeitsgrad oder konstanter Test.
Produktmerkmale:
1, Verwenden Sie CNC-Schneiden, Laseröffnung, Massenproduktionstestkammer.
2, Sprühen Sie ausschließlich Outdoor-Pulver, Pulver wird nach Gebrauch nicht recycelt, starke Haftung ohne Abwechslung.
3, Der visuelle Fensterrahmen besteht aus einer einmaligen Öffnungsform, die einen starken industriellen Sinn hat.
4, Die Instrumententafel aus einmaliger Form ist schön und großzügig. Das Etikett auf der Instrumententafel besteht aus PVC-Aufklebern und der hintere Kleber besteht aus 3M-Kleber.
5. Die Lenkrolle übernimmt die höhenverstellbare Lenkrolle der Originalfabrik von Qidong Baiyun Electronics, nicht auf dem Markt erhältliche gefälschte Produkte, hochwertig, schön und großzügig.
6. Alle Standardzeichnungen des Kühlsystems sind geschweißt, um sicherzustellen, dass die Rohrleitungen aller Geräte konsistent sind und die Kühlleistung den entsprechenden Zustand erreicht hat.
7, Verkabelung aller Standardzeichnungen des elektrischen Systems, dreizehn Inspektionsvorgänge nach Abschluss der Verkabelung, um eine genaue Verkabelung und keine Probleme sicherzustellen.
8. Das Wassersystem verwendet drei Tassen zur Steuerung des Wasserstands, um sicherzustellen, dass die Wasserversorgung des Luftbefeuchters vom Wasserstand der Feuchtkugel getrennt ist. Die durch das Befeuchterwasser verursachten Temperaturschwankungen werden vermieden.
Anzeige:
1, Das Original-Marken-Temperatur- und Feuchtigkeitsmessgerät, 5,7-Zoll-High-Definition-Echtfarben-LCD-Touchscreen.
2, Echtzeitüberwachung (Überwachung der Echtzeitdaten des Controllers, Signalpunktstatus, tatsächlicher Ausgangsstatus).
3. Der Controller kann die historischen Daten innerhalb von 600 Tagen speichern (wenn die Temperatur- und Feuchtigkeitsdaten gleichzeitig in einem Aufzeichnungsintervall von mehr als 1 Minute im 24-Stunden-Betrieb aufgezeichnet werden) und die hochgeladene historische Datenkurve wiedergeben .
4. Die exportierten Dateien können auf dem Computer angezeigt oder mit einer zufälligen Geschenksoftware in das Excel-Format konvertiert werden.
5, Instrument mit RS232/485-Anschluss ausgestattet.
6. Mit der automatischen Berechnungsfunktion können die Temperatur- und Feuchtigkeitsänderungsbedingungen sofort korrigiert werden, sodass die Temperatur- und Feuchtigkeitsregelung sicherer und stabiler ist.
Heizsystem:
1, die Verwendung einer elektrischen Hochgeschwindigkeitsheizung aus Nickellegierung im fernen Infrarot (2 kW × 2);
2, Hochtemperaturunabhängiges System, hat keinen Einfluss auf Niedertemperaturtests, Hochtemperaturtests und wechselnde Temperatur und Luftfeuchtigkeit;
3. Die Ausgangsleistung der Temperatur- und Feuchtigkeitsregelung wird vom Mikrocomputer berechnet, um eine hohe Präzision und einen hohen Wirkungsgrad zu erreichen.
Vorsichtsmaßnahmen für den Betrieb der Testkammer mit konstanter Temperatur und Luftfeuchtigkeit1, Um Maschinenausfälle in der zu vermeiden Prüfkammer für konstante Temperatur und LuftfeuchtigkeitBitte sorgen Sie für eine Stromversorgung innerhalb des Nennspannungsbereichs.2. Um Stromschläge oder Fehlbedienungen und Ausfälle zu vermeiden, schalten Sie die Stromversorgung nicht ein, bevor die Installation und Verkabelung abgeschlossen ist.3, Dieses Produkt ist ein nicht explosionsgeschütztes Produkt. Bitte verwenden Sie das Gerät mit konstanter Temperatur und Luftfeuchtigkeit nicht in einer Umgebung mit brennbaren oder explosiven Gasen.4. Versuchen Sie bitte, die Testkammertür während des Betriebs des Geräts nicht zu öffnen. Bei hoher Temperatur kann das Öffnen zu Verletzungen des Bedieners durch Überhitzung führen. Bei niedriger Temperatur kann das Öffnen zu Frostschäden beim Personal und zum Einfrieren des Verdampfers führen. Auswirkungen auf die Kühlwirkung haben. Wenn Sie öffnen müssen, führen Sie bitte einige Schutzmaßnahmen durch.5. Es ist verboten, das Gerät mit konstanter Temperatur und Luftfeuchtigkeit ohne Genehmigung zu zerlegen, zu verarbeiten, umzuwandeln oder zu reparieren, andernfalls kann es zu ungewöhnlichen Vorgängen, Stromschlägen oder Brandgefahr kommen.6. Die Belüftungsöffnungen der Kammer sollten frei gehalten werden, um Ausfälle, abnormalen Betrieb, verkürzte Lebensdauer und Feuer zu vermeiden.7. Wenn die Maschine beim Auspacken beschädigt oder deformiert ist, verwenden Sie sie bitte nicht.8. Bei der Installation und Einstellung der Maschine muss darauf geachtet werden, dass kein Staub, Draht, Eisenspäne oder andere Gegenstände eindringen, da es sonst zu Fehlfunktionen oder Ausfällen kommen kann.9. Die Verkabelung muss korrekt sein und geerdet sein. Eine fehlende Erdung kann zu Stromschlägen, Fehlbedienungen, abnormalen Anzeigen oder großen Messfehlern führen.10. Überprüfen Sie regelmäßig die Klemmenschrauben und den festen Rahmen. Verwenden Sie diese bitte nicht, wenn sie lose sind.11. Während des Betriebs des Instruments muss die Abdeckung der Stromeingangsklemmen auf der Klemmenleiste angebracht werden, um einen Stromschlag zu verhindern.12. Das in Betrieb befindliche Instrument, die Einstellung, die Signalausgabe, das Starten, Stoppen und andere Vorgänge sollten vor der Sicherheit vollständig berücksichtigt werden. Eine falsche Bedienung führt zu Schäden an der Arbeitsausrüstung oder zu Ausfällen.13. Bitte verwenden Sie zum Abwischen des Instruments ein trockenes Tuch. Verwenden Sie keinen Alkohol, kein Benzin oder andere organische Lösungsmittel. Spritzen Sie kein Wasser auf das Instrument. Wenn das Instrument in Wasser eingetaucht ist, stellen Sie die Verwendung bitte sofort ein, da sonst die Gefahr besteht Leckage, Stromschlag oder Feuer verursacht werden.14. Die internen Teile des Instruments haben eine bestimmte Lebensdauer. Um das Instrument weiterhin sicher verwenden zu können, führen Sie bitte regelmäßige Wartungs- und Instandhaltungsarbeiten durch. Wenn Sie dieses Produkt verschrotten, behandeln Sie es bitte als Industrieabfall.15. Bevor Sie beginnen, prüfen Sie, ob die Stromversorgung stabil ist.
Verwenden Sie das Prinzip der Hoch- und Niedertemperatur-Testkammer, des Niedertemperatur- und des Konstanttemperaturtanks Aufgrund seines eigenen Zirkulationssystems ist die Gleichmäßigkeit des Temperaturfelds sehr hoch, und immer mehr Experimente werden auf den Niedertemperaturtank mit konstanter Temperatur angewendet. Wird hauptsächlich in den Bereichen Erdöl, Chemie, elektronische Instrumente, Physik, Chemie, Biotechnik, Medizin und Gesundheit, Biowissenschaften, leichte industrielle Lebensmittel, Prüfung physikalischer Eigenschaften und chemische Analyse sowie in anderen Forschungsabteilungen, Hochschulen und Universitäten, Qualitätsprüfungs- und Produktionsabteilungen von Unternehmen verwendet. um Benutzern eine heiß- und kaltgesteuerte, gleichmäßige und konstante Temperaturfeldquelle für Testproben oder Produkte zur Verfügung zu stellen, um Tests oder Tests bei konstanter Temperatur durchzuführen. Es kann auch als Wärmequelle oder Kältequelle zum direkten Heizen oder Kühlen und zum zusätzlichen Heizen oder Kühlen verwendet werden.Welche Vorsichtsmaßnahmen sind bei der Verwendung eines Tanks mit niedriger oder konstanter Temperatur zu beachten?1. Vor der Verwendung eines Niedertemperaturtanks mit konstanter Temperatur sollte dem Tank das flüssige Medium (reines Wasser, Alkohol, Methylsilikonöl) zugesetzt werden. Der mittlere Flüssigkeitsstand sollte weniger als 20 mm auf der Werkbank betragen, da sonst die Stromversorgung die Heizung beschädigt .2, Die Auswahl des flüssigen Mediums im Niedertemperaturtank mit konstanter Temperatur sollte den folgenden Grundsätzen entsprechen:Wenn die Betriebstemperatur unter 5 °C liegt, ist das flüssige Medium im Allgemeinen Alkohol;Wenn die Betriebstemperatur 5 bis 85 °C beträgt, ist das flüssige Medium im Allgemeinen Wasser;Wenn die Arbeitstemperatur 85 bis 95 °C beträgt, kann das flüssige Medium eine 15 %ige wässrige Glycerinlösung wählen, die die Verdunstung von Wasser reduzieren kann;Wenn die Betriebstemperatur höher als 95 ° C ist, wird im Allgemeinen Öl als flüssiges Medium ausgewählt, und der Flammpunktwert des ausgewählten Öls im offenen Tiegel sollte höher als die Betriebstemperatur von 50 ° C oder mehr sein; Im Allgemeinen wird Methylsilikonöl mit niedriger Viskosität verwendet.3, Stromversorgung: 220V50Hz, die Stromversorgung sollte größer sein als die Gesamtleistung des Instruments, die Stromversorgung muss über eine gute „Erdungs“-Vorrichtung verfügen.4. Das Instrument sollte an einem trockenen und belüfteten Ort aufgestellt werden und es dürfen sich im Umkreis von 300 mm um das Instrument keine Hindernisse befinden.5. Wenn die Betriebstemperatur des Thermostats hoch ist, sollten Sie darauf achten, die Abdeckung nicht zu öffnen und Ihre Hände nicht in die Nut zu stecken, um Verletzungen durch Überhitzung zu vermeiden.6. Nach der Verwendung werden alle Schalter ausgeschaltet und die Stromversorgung unterbrochen.7. Vermeiden Sie, dass saure und alkalische Substanzen in die Korrosionsschlange und die Innenauskleidung des Tanks gelangen.8, Das Instrument sollte bei regelmäßigen Reinigungsarbeiten und bei längerem Gebrauch gute Arbeit leisten, die Medien im Tank entleeren und sauber wischen, die Werkbank und das Bedienfeld sauber halten.9. Achten Sie häufig darauf, den Flüssigkeitsstand im Tank zu beobachten. Wenn der Flüssigkeitsstand zu niedrig ist, sollte das flüssige Medium rechtzeitig nachgefüllt werden.10, Externe Flüssigkeitszirkulation: Kunden sollten besonders auf die Festigkeit der Verbindung des führenden Rohrs achten und unbedingt ein Herunterfallen verhindern, um ein Austreten von Flüssigkeit zu vermeiden.
Welche Arten von PCB-Umwelttests gibt es?Hochbeschleunigungstest:Zu den beschleunigten Tests gehören der High Accelerated Life Test (HALT) und das High Accelerated Stress Screening (HASS). Diese Tests bewerten die Zuverlässigkeit von Produkten in kontrollierten Umgebungen, einschließlich Tests bei hohen Temperaturen, hoher Luftfeuchtigkeit und Vibrations-/Schocktests, wenn das Gerät eingeschaltet ist. Ziel ist es, die Bedingungen zu simulieren, die zum drohenden Ausfall eines neuen Produkts führen können. Während des Tests wird das Produkt in einer simulierten Umgebung überwacht. Umweltprüfungen elektronischer Produkte umfassen normalerweise Tests in einer kleinen Umweltkammer.Feuchtigkeit und Korrosion:Viele Leiterplatten werden in feuchten Umgebungen eingesetzt, daher ist ein Wasserabsorptionstest ein üblicher Test für die Zuverlässigkeit von Leiterplatten. Bei dieser Art von Test wird die Leiterplatte vor und nach dem Einlegen in eine feuchtigkeitskontrollierte Klimakammer gewogen. Jegliches Wasseradsorptionsmittel auf dem Board erhöht das Gewicht des Boards und jede wesentliche Gewichtsänderung führt zur Disqualifikation.Bei der Durchführung dieser Prüfungen im Betrieb dürfen freiliegende Leiter in feuchter Umgebung nicht korrodieren. Kupfer oxidiert leicht, wenn es ein bestimmtes Potenzial erreicht, weshalb freiliegendes Kupfer häufig mit einer Antioxidationslegierung überzogen wird. Einige Beispiele sind ENIG, ENIPIG, HASL, Nickelgold und Nickel.Thermoschock und Zirkulation:Hitzetests werden normalerweise getrennt von Feuchtigkeitstests durchgeführt. Zu diesen Tests gehört die wiederholte Änderung der Platinentemperatur und die Prüfung, wie sich thermische Ausdehnung/Kontraktion auf die Zuverlässigkeit auswirkt. Beim Thermoschocktest nutzt die Leiterplatte ein Zweikammersystem, um schnell zwischen zwei Temperaturextremen zu wechseln. Die niedrige Temperatur liegt normalerweise unter dem Gefrierpunkt und die hohe Temperatur ist normalerweise höher als die Glasübergangstemperatur des Substrats (über ~130 °C). Der Wärmezyklus wird in einer einzigen Kammer durchgeführt, wobei sich die Temperatur mit einer Geschwindigkeit von 10 °C pro Minute von einem Extrem zum anderen ändert.Bei beiden Tests dehnt sich die Platine aus oder zieht sich zusammen, wenn sich die Platinentemperatur ändert. Während des Expansionsprozesses werden Leiter und Lötstellen einer hohen Belastung ausgesetzt, was die Lebensdauer des Produkts beschleunigt und die Identifizierung mechanischer Fehlerstellen ermöglicht.
Umweltsimulationstestschema für Wasserstoff-Brennstoffzellen
Gegenwärtig hat das Wirtschaftsentwicklungsmodell, das auf dem Verbrauch nicht erneuerbarer Energien auf der Basis von Kohle, Öl und Erdgas basiert, zu einer immer stärkeren Umweltverschmutzung und einem Treibhauseffekt geführt. Um eine nachhaltige Entwicklung des Menschen zu erreichen, wurde eine harmonische Beziehung zwischen Mensch und Natur hergestellt. Die Entwicklung nachhaltiger grüner Energie ist weltweit zu einem Thema großer Besorgnis geworden.
Als saubere Energie, die Abfallenergie speichern und die Umwandlung von traditioneller fossiler Energie in grüne Energie fördern kann, hat Wasserstoffenergie eine Energiedichte (140 MJ/kg), die dreimal so hoch ist wie die von Öl und 4,5 mal so hoch wie die von Kohle, und gilt als eine subversive technologische Richtung der zukünftigen Energiewende. Die Wasserstoff-Brennstoffzelle ist der Schlüsselträger für die Umwandlung von Wasserstoffenergie in elektrische Energie. Nachdem das Ziel der CO2-Neutralität und des Kohlenstoffpeaks „Double Carbon“ vorgeschlagen wurde, hat es neue Aufmerksamkeit in der Grundlagenforschung und industriellen Anwendung erlangt.
Die Umwelttestkammer für Wasserstoff-Brennstoffzellen von Lab Companion erfüllt: Brennstoffzellenstapel und -modul: 1 W ~ 8 kW, Brennstoffzellenmotor: 30 kW ~ 150 kW Kaltstarttest bei niedriger Temperatur: -40 ~ 0 °C Lagerungstest bei niedriger Temperatur: -40 ~ 0 °C Hoch Temperaturlagertest: 0~100℃.
Einführung einer Umwelttestkammer für Wasserstoffbrennstoffzellen
Das Produkt ist funktional modular aufgebaut, explosionsgeschützt und antistatisch und erfüllt die relevanten Prüfnormen. Das Produkt zeichnet sich durch hohe Zuverlässigkeit und umfassende Sicherheitswarnung aus und eignet sich für den Test des Reaktor- und Brennstoffzellenmotorsystems. Anwendbare Leistung bis zu 150 kW Brennstoffzellensystem, Niedertemperaturtest (Lagerung, Start, Leistung), Hochtemperaturtest (Lagerung, Start, Leistung), Nasshitzetest (hohe Temperatur und Luftfeuchtigkeit).
Sicherheitsteile:
1. Explosionsgeschützte Kamera: Zeichnen Sie die gesamte Testsituation in Echtzeit in der Box auf und lassen Sie sich einfach optimieren oder rechtzeitig anpassen.
2. UV-Flammenmelder: Hochgeschwindigkeits-, genauer und intelligenter Brandmelder, genaue Identifizierung von Flammensignalen.
3. Notabluftauslass: Absaugen des giftigen brennbaren Gases in der Box, um die Sicherheit des Tests zu gewährleisten.
4. Gasdetektions- und Alarmsystem: Intelligente und schnelle Identifizierung brennbarer Gase, automatische Generierung von Alarmsignalen.
5. Doppelte parallele einpolige Schraubenmechanismus-Kälteeinheit: Sie weist die Eigenschaften einer Klassifizierungsfunktion, großer Leistung, geringer Stellfläche usw. auf.
6. Gasvorkühlsystem: Kontrollieren Sie schnell die Gastemperaturanforderungen, um Kaltstartbedingungen sicherzustellen.
7. Stapeltestgestell: Stapeltestgestell aus Edelstahl, ausgestattet mit einem Wasserkühlungs-Hilfskühlsystem.
Testprojekt für Brennstoffzellensysteme
Testprojekt für Brennstoffzellensysteme
Luftdichtheitstest für Brennstoffzellenmotoren
Qualität des Stromerzeugungssystems
Das Volumen des Batteriestapels
Erkennung des Isolationswiderstands
Startcharakteristiktest
Nennleistungsstarttest
Steady-State-Kennlinientest
Prüfung der Nennleistungskennlinie
Prüfung der Spitzenleistungscharakteristik
Prüfung der dynamischen Reaktionseigenschaften
Anpassungsfähigkeitstest bei hohen Temperaturen
Leistungstest des Brennstoffzellenmotorsystems
Vibrationsfestigkeitstest
Anpassungsfähigkeitstest bei niedrigen Temperaturen
Starttest (niedrige Temperatur)
Leistungstest der Stromerzeugung
Abschalttest
Lagerungstest bei niedriger Temperatur
Start- und Betriebsverfahren bei niedrigen Temperaturen
/
/
Prüfobjekte für Reaktoren und Module
Prüfobjekte für Reaktoren und Module
Routineinspektion
Gaslecktest
Normaler Betriebstest
Arbeitsdruckprüfung durchführen lassen
Druckprüfung des Kühlsystems
Gaskanaltest
Prüfungen der Schlag- und Vibrationsfestigkeit
Elektrischer Überlasttest
Spannungsfestigkeitstest
Druckdifferenztest
Prüfung der Konzentration brennbarer Gase
Überdrucktest
Wasserstofflecktest
Test des Gefrier-/Tauzyklus
Hochtemperatur-Lagertest
Luftdichtheitsprüfung
Kraftstoffmangeltest
Sauerstoff-/Oxidationsmittel-Mangeltest
Kurzschlusstest
Mangelnde Kühlung/beeinträchtigter Kühltest
Test des Penetrationsüberwachungssystems
Bodentest
Starttest
Leistungstest der Stromerzeugung
Abschalttest
Lagerungstest bei niedriger Temperatur
Starttest bei niedriger Temperatur
Für das Produkt geltende Normen:
GB/T 10592-2008 Technische Bedingungen der Testkammer für hohe und niedrige Temperaturen
Technische Bedingungen der Feuchtigkeitsprüfkammer GB/T 10586-2006
GB/T31467.3-2015
GB/T31485-2015
GB/T2423.1-2208
GB/T2423.2-2008
GB/T2423.3-2006
GB/T2523.4-2008
IEC 61646-Teststandard für photoelektrische Dünnschicht-SolarmoduleDurch die Diagnosemessung, elektrische Messung, Bestrahlungsprüfung, Umweltprüfung, mechanische Prüfung fünf Arten von Prüf- und Inspektionsmodi bestätigen Sie die Designbestätigung und bilden die Zulassungsanforderungen für Dünnschicht-Solarenergie und bestätigen, dass das Modul in der allgemeinen Klimaumgebung betrieben werden kann seit langem von der Spezifikation gefordert.IEC 61646-10.1 SichtprüfungsverfahrenZiel: Prüfung auf optische Mängel am Modul.Leistung bei STC unter IEC 61646-10.2 Standard-TestbedingungenZiel: Testen Sie die elektrische Leistung des Moduls unter Last mit natürlichem Licht oder einem Simulator der Klasse A unter Standardtestbedingungen (Batterietemperatur: 25 ± 2 °C, Bestrahlungsstärke: 1000 Wm^-2, Standard-Sonnenspektrum-Bestrahlungsverteilung gemäß IEC891). ändern.IEC 61646-10.3 IsolationstestZiel: Prüfung, ob eine gute Isolierung zwischen den stromführenden Teilen und dem Rahmen des Moduls bestehtIEC 61646-10.4 Messung von TemperaturkoeffizientenZiel: Prüfung des aktuellen Temperaturkoeffizienten und des Spannungstemperaturkoeffizienten im Modultest. Der gemessene Temperaturkoeffizient gilt nur für die im Test verwendete Strahlung. Bei linearen Modulen gilt der Wert innerhalb von ±30 % dieser Einstrahlung. Dieses Verfahren ist eine Ergänzung zu IEC891, das die Messung dieser Koeffizienten von einzelnen Zellen in einer repräsentativen Charge spezifiziert. Der Temperaturkoeffizient des Dünnschichtsolarzellenmoduls hängt vom Wärmebehandlungsprozess des jeweiligen Moduls ab. Wenn es um den Temperaturkoeffizienten geht, sollten die Bedingungen der thermischen Prüfung und die Bestrahlungsergebnisse des Prozesses angegeben werden.IEC 61646-10.5 Messung der nominalen Betriebszellentemperatur (NOCT)Ziel: Testen des NOCT des ModulsIEC 61646-10.6 Leistung bei NOCTZiel: Wenn die Nennbetriebstemperatur und die Einstrahlungsstärke der Batterie 800 Wm^-2 betragen, variiert die elektrische Leistung des Moduls unter der Standardbedingung der Sonnenspektrum-Einstrahlungsverteilung mit der Last.IEC 61646-10.7 Leistung bei geringer EinstrahlungZiel: Bestimmung der elektrischen Leistung von Modulen unter Last bei natürlichem Licht oder einem Klasse-A-Simulator bei 25 °C und 200 Wm^-2 (gemessen mit geeigneter Referenzzelle).IEC 61646-10.8 Prüfung der FreibewitterungZiel: Eine unbekannte Bewertung der Widerstandsfähigkeit des Moduls gegenüber Außenbedingungen vorzunehmen und etwaige Verschlechterungseffekte aufzuzeigen, die durch das Experiment oder den Test nicht festgestellt werden konnten.IEC 61646-10.9 Hot-Spot-TestZiel: Bestimmung der Fähigkeit des Moduls, thermischen Einflüssen standzuhalten, wie z. B. Alterung des Verpackungsmaterials, Risse in der Batterie, interne Verbindungsfehler, lokale Verschattung oder fleckige Kanten können solche Defekte verursachen.IEC 61646-10.10 UV-Test (UV-Test)Ziel: Um die Widerstandsfähigkeit des Moduls gegen ultraviolette (UV) Strahlung zu bestätigen, wird der neue UV-Test in IEC1345 beschrieben. Bei Bedarf sollte das Modul vor der Durchführung dieses Tests Licht ausgesetzt werden.IEC61646-10.11 Thermowechseltest (Thermowechseltest)Ziel: Bestätigung der Fähigkeit des Moduls, thermischer Inhomogenität, Ermüdung und anderen Belastungen aufgrund wiederholter Temperaturänderungen zu widerstehen. Das Modul sollte vor diesem Test getempert werden. [Pre-I-V-Test] bezieht sich auf den Test nach dem Glühen. Achten Sie darauf, das Modul vor dem letzten I-V-Test keinem Licht auszusetzen.Testanforderungen:A. Instrumente zur Überwachung der elektrischen Kontinuität innerhalb jedes Moduls während des gesamten TestprozessesB. Überwachen Sie die Isolationsintegrität zwischen einem der vertieften Enden jedes Moduls und dem Rahmen oder StützrahmenC. Zeichnen Sie die Modultemperatur während des Tests auf und überwachen Sie eventuell auftretende Unterbrechungen oder Erdungsfehler (keine zeitweise Unterbrechungen oder Erdungsfehler während des Tests).d. Der Isolationswiderstand muss die gleichen Anforderungen wie bei der Erstmessung erfüllenIEC 61646-10.12 Feuchtigkeits-GefrierzyklustestZweck: Um die Widerstandsfähigkeit des Moduls gegenüber dem Einfluss der nachfolgenden Minustemperatur bei hoher Temperatur und Luftfeuchtigkeit zu testen, handelt es sich nicht um einen Thermoschocktest. Vor Erhalt des Tests sollte das Modul geglüht und einem Thermozyklustest unterzogen werden. [ [Pre-IV-Test] bezieht sich auf den Wärmezyklus nach dem Test. Achten Sie darauf, das Modul vor dem letzten I-V-Test keinem Licht auszusetzen.Testanforderungen:A. Instrumente zur Überwachung der elektrischen Kontinuität innerhalb jedes Moduls während des gesamten TestprozessesB. Überwachen Sie die Isolationsintegrität zwischen einem der vertieften Enden jedes Moduls und dem Rahmen oder StützrahmenC. Zeichnen Sie die Modultemperatur während des Tests auf und überwachen Sie eventuell auftretende Unterbrechungen oder Erdungsfehler (keine zeitweise Unterbrechungen oder Erdungsfehler während des Tests).D. Der Isolationswiderstand muss die gleichen Anforderungen wie bei der Erstmessung erfüllenIEC 61646-10.13 Feuchte-Hitze-Test (Feuchte Hitze)Ziel: Testen der Widerstandsfähigkeit des Moduls gegen langfristiges Eindringen von FeuchtigkeitPrüfanforderungen: Der Isolationswiderstand muss die gleichen Anforderungen wie bei der Erstmessung erfüllenIEC 61646-10.14 Robustheit von AnschlüssenZiel: Feststellung, ob die Befestigung zwischen dem Leitungsende und dem Leitungsende am Modulkörper der Kraft während der normalen Installation und des normalen Betriebs standhalten kann.Verdrehungstest nach IEC 61646-10.15Ziel: Mögliche Probleme erkennen, die durch die Modulinstallation auf einer unvollständigen Struktur verursacht werdenIEC 61646-10.16 Mechanischer BelastungstestZweck: Der Zweck dieses Tests besteht darin, die Fähigkeit des Moduls zu bestimmen, Wind, Schnee, Eis oder statischen Belastungen standzuhaltenIEC 61646-10.17 HageltestZiel: Überprüfung der Schlagfestigkeit des Moduls gegenüber HagelIEC 61646-10.18 LichteinweichtestZiel: Stabilisierung der elektrischen Eigenschaften von Dünnschichtmodulen durch Simulation der SonneneinstrahlungIEC 61646-10.19 Glühtests (Glühen)Ziel: Das Folienmodul wird vor dem Verifizierungstest getempert. Wenn es nicht geglüht wird, kann die Erwärmung während des nachfolgenden Testvorgangs die durch andere Ursachen verursachte Dämpfung überdecken.IEC 61646-10.20 NassleckstromtestZweck: Bewertung der Isolierung des Moduls unter nassen Betriebsbedingungen und Überprüfung, dass keine Feuchtigkeit aus Regen, Nebel, Tau oder schmelzendem Schnee in die stromführenden Teile des Modulstromkreises gelangt, was zu Korrosion, Erdschluss oder Sicherheitsrisiken führen kann.
Vergleich der Testkammer mit natürlicher Konvektion, der Testkammer mit konstanter Temperatur und Luftfeuchtigkeit und dem HochtemperaturofenAnweisungen:Audiovisuelle Heimunterhaltungsgeräte und Automobilelektronik gehören zu den Schlüsselprodukten vieler Hersteller, und das Produkt im Entwicklungsprozess muss die Anpassungsfähigkeit des Produkts an Temperatur und elektronische Eigenschaften bei verschiedenen Temperaturen simulieren. Wenn jedoch ein allgemeiner Ofen oder eine Wärme- und Feuchtigkeitskammer zur Simulation der Temperaturumgebung verwendet wird, verfügt entweder der Ofen oder die Wärme- und Feuchtigkeitskammer über einen Testbereich, der mit einem Umwälzventilator ausgestattet ist, sodass es im Testbereich zu Problemen mit der Windgeschwindigkeit kommt.Während des Tests wird die Temperaturgleichmäßigkeit durch die Rotation des Umwälzventilators ausgeglichen. Obwohl durch die Windzirkulation eine gleichmäßige Temperaturverteilung im Testbereich erreicht werden kann, wird die Wärme des zu testenden Produkts auch durch die zirkulierende Luft abgeführt, was in der windfreien Einsatzumgebung erheblich zu Unstimmigkeiten mit dem tatsächlichen Produkt führt (z. B. Wohnzimmer, Innenbereich).Aufgrund des Verhältnisses der Windzirkulation beträgt der Temperaturunterschied des zu prüfenden Produkts nahezu 10℃. Um die tatsächliche Nutzung von Umgebungsbedingungen zu simulieren, werden viele Menschen missverstehen, dass nur die Testkammer Temperatur erzeugen kann (z. B. Ofen, Luftfeuchtigkeitskammer mit konstanter Temperatur) und natürliche Konvektionstests durchführen kann. Tatsächlich ist dies nicht der Fall. In der Spezifikation werden besondere Anforderungen an die Windgeschwindigkeit gestellt und eine Testumgebung ohne Windgeschwindigkeit gefordert. Durch die Testausrüstung und Software für natürliche Konvektion wird die Temperaturumgebung ohne Durchgang durch den Lüfter (natürliche Konvektion) erzeugt und der Testintegrationstest zur Temperaturerkennung des zu testenden Produkts durchgeführt. Diese Lösung kann für Heimelektronik oder reale Umgebungstemperaturtests in engen Räumen (z. B. große LCD-Fernseher, Autocockpits, Automobilelektronik, Laptops, Desktops, Spielekonsolen, Stereoanlagen usw.) verwendet werden.Testspezifikation für ungezwungene Luftzirkulation: IEC-68-2-2, GB2423.2, GB2423.2-89 3.31 Der Unterschied zwischen der Testumgebung mit oder ohne Windzirkulation und dem Test der zu testenden Produkte:Anweisungen:Wenn das zu prüfende Produkt nicht mit Strom versorgt wird, erwärmt sich das zu prüfende Produkt nicht selbst, seine Wärmequelle nimmt nur die Luftwärme im Prüfofen auf, und wenn das zu prüfende Produkt mit Strom versorgt und erhitzt wird, wird die Windzirkulation im Ofen erzeugt Der Prüfofen entzieht dem zu prüfenden Produkt die Wärme. Mit jeder Zunahme der Windgeschwindigkeit um 1 Meter verringert sich die Wärme um etwa 10 %. Angenommen, die Temperatureigenschaften elektronischer Produkte in einer Innenumgebung ohne Klimaanlage zu simulieren. Wenn ein Ofen oder ein Luftbefeuchter mit konstanter Temperatur verwendet wird, um 35 °C zu simulieren, kann die Umgebung zwar durch elektrische Heizung und Kompressor auf 35 °C geregelt werden, die Windzirkulation des Ofens und der Wärme- und Befeuchtungstestkammer führt jedoch die Wärme ab des zu testenden Produkts. Damit ist die tatsächliche Temperatur des zu prüfenden Produkts niedriger als die Temperatur im realen windstillen Zustand. Es ist notwendig, eine Testkammer mit natürlicher Konvektion ohne Windgeschwindigkeit zu verwenden, um die tatsächliche windstille Umgebung effektiv zu simulieren (Innenraum, kein Startauto-Cockpit, Instrumentenchassis, wasserdichte Außenkammer ... Solche Umgebung).Vergleichstabelle der Windgeschwindigkeit und des zu testenden IC-Produkts:Beschreibung: Wenn die Umgebungswindgeschwindigkeit höher ist, entzieht die IC-Oberflächentemperatur aufgrund des Windzyklus auch die IC-Oberflächenwärme, was dazu führt, dass die Windgeschwindigkeit schneller und die Temperatur umso niedriger ist.
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.