Banner
Heim

Blog

Blog

  • A Brief Discussion on the Use and Maintenance of Environmental Testing Chamber
    May 10, 2025
    Ⅰ. Proper Use of LABCOMPANION's Instrument Environmental testing equipment remains a type of precision and high-value instrument. Correct operation and usage not only provide accurate data for testing personnel but also ensure long-term normal operation and extend the equipment's service life.   First, before conducting environmental tests, it is essential to familiarize oneself with the performance of the test samples, test conditions, procedures, and techniques. A thorough understanding of the technical specifications and structure of the testing equipment—particularly the operation and functionality of the controller—is crucial. Carefully reading the equipment’s operation manual can prevent malfunctions caused by operational errors, which may lead to sample damage or inaccurate test data.   Second, select the appropriate testing equipment. To ensure smooth test execution, suitable equipment should be chosen based on the characteristics of the test samples. A reasonable ratio should be maintained between the sample volume and the effective chamber capacity of the test chamber. For heat-dissipating samples, the volume should not exceed one-tenth of the chamber’s effective capacity. For non-heating samples, the volume should not exceed one-fifth. For example, a 21-inch color TV undergoing temperature storage testing may fit well in a 1-cubic-meter chamber, but a larger chamber is required when the TV is powered on due to heat generation.   Third, position the test samples correctly. Samples should be placed at least 10 cm away from the chamber walls. Multiple samples should be arranged on the same plane as much as possible. The placement should not obstruct the air outlet or inlet, and sufficient space should be left around the temperature and humidity sensors to ensure accurate readings.   Fourth, for tests requiring additional media, the correct type must be added according to specifications. For instance, water used in humidity test chambers must meet specific requirements: the resistivity should not be less than 500 Ω·m. Tap water typically has a resistivity of 10–100 Ω·m, distilled water 100–10,000 Ω·m, and deionized water 10,000–100,000 Ω·m. Therefore, distilled or deionized water must be used for humidity tests, and it should be fresh, as water exposed to air absorbs carbon dioxide and dust, reducing its resistivity over time. Purified water available on the market is a cost-effective and convenient alternative.   Fifth, proper use of humidity test chambers. The wet-bulb gauze or paper used in humidity chambers must meet specific standards—not just any gauze can substitute. Since relative humidity readings are derived from the dry-bulb and wet-bulb temperature difference (strictly speaking, also influenced by atmospheric pressure and airflow), the wet-bulb temperature depends on water absorption and evaporation rates, which are directly affected by the gauze quality. Meteorological standards require that wet-bulb gauze must be a specialized "wet-bulb gauze" made of linen. Incorrect gauze may lead to inaccurate humidity control. Additionally, the gauze must be installed properly: 100 mm in length, tightly wrapped around the sensor probe, with the probe positioned 25–30 mm above the water cup, and the gauze immersed in water to ensure precise humidity control.   Ⅱ. Maintenance of Environmental Testing Equipment Environmental testing equipment comes in various types, but the most commonly used are high-temperature, low-temperature, and humidity chambers. Recently, combined temperature-humidity test chambers integrating these functions have become popular. These are more complex to repair and serve as representative examples. Below, we discuss the structure, common malfunctions, and troubleshooting methods for temperature-humidity test chambers.   (1) Structure of Common Temperature-Humidity Test Chambers In addition to proper operation, test personnel should understand the equipment’s structure. A temperature-humidity test chamber consists of a chamber body, air circulation system, refrigeration system, heating system, and humidity control system. The air circulation system typically features adjustable airflow direction. The humidification system may use boiler-based or surface evaporation methods. The cooling and dehumidification system employs an air-conditioning refrigeration cycle. The heating system may use electric fin heaters or direct resistance wire heating. Temperature and humidity measurement methods include dry-wet bulb testing or direct humidity sensors. Control and display interfaces may feature separate or combined temperature-humidity controllers.   (2) Common Malfunctions and Troubleshooting Methods for Temperature-Humidity Test Chambers 1.High-Temperature Test Issues   If the temperature fails to reach the set value, inspect the electrical system to identify faults. If the temperature rises too slowly, check the air circulation system, ensuring the damper is properly adjusted and the fan motor is functioning. If temperature overshooting occurs, recalibrate the PID settings. If the temperature spikes uncontrollably, the controller may be faulty and require replacement.   2.Low-Temperature Test Issues   If the temperature drops too slowly or rebounds after reaching a certain point:                Ensure the chamber is pre-dried before testing.                Verify that samples are not overcrowded, obstructing airflow.                If these factors are ruled out, the refrigeration system may need professional servicing. Temperature rebound is often due to poor ambient conditions (e.g., insufficient clearance behind the chamber or high ambient temperature).   3.Humidity Test Issues   If humidity reaches 100% or significantly deviates from the target:                  For 100% humidity: Check if the wet-bulb gauze is dry. Inspect the water level in the wet-bulb sensor’s reservoir and the automatic water supply system. Replace or clean hardened gauze if necessary.                  For low humidity: Verify the humidification system’s water supply and boiler level. If these are normal, the electrical control system may require professional repair.   4.Emergency Faults During Operation   If the equipment malfunctions, the control panel will display an error code with an audible alarm. Operators can refer to the troubleshooting section in the manual to identify the issue and arrange for professional repairs to resume testing promptly.   Other environmental testing equipment may exhibit different issues, which should be analyzed and resolved case by case. Regular maintenance is essential, including cleaning the condenser, lubricating moving parts, and inspecting electrical controls. These measures are indispensable for ensuring equipment longevity and reliability.
    Mehr lesen
  • QUV UV Accelerated Weathering Tester and Its Applications in the Textile Industry
    Apr 28, 2025
    The QUV UV accelerated weathering tester is widely used in the textile field, primarily for evaluating the weather resistance of textile materials under specific conditions.   I. Working Principle The QUV UV accelerated weathering tester assesses the weather resistance of textile materials by simulating ultraviolet (UV) radiation from sunlight and other environmental conditions. The device utilizes specialized fluorescent UV lamps to replicate the UV spectrum of sunlight, generating high-intensity UV radiation to accelerate material aging. Additionally, the tester controls environmental parameters such as temperature and humidity to comprehensively simulate real-world conditions affecting the material.   II. Applicable Standards In the textile industry, the QUV tester complies with standards such as GB/T 30669, among others. These standards are typically used to evaluate the weather resistance of textile materials under specific conditions, including colorfastness, tensile strength, elongation at break, and other key performance indicators. By simulating UV exposure and other environmental factors encountered in real-world applications, the QUV tester provides reliable data to support product development and quality control.   III. Testing Process During testing, textile samples are placed inside the QUV tester and exposed to high-intensity UV radiation. Depending on the standard requirements, additional environmental conditions such as temperature and humidity may be controlled. After a specified exposure period, the samples undergo a series of performance tests to assess their weather resistance.   IV. Key Features Realistic Simulation: The QUV tester accurately replicates short-wave UV radiation, effectively reproducing physical damage caused by sunlight, including fading, loss of gloss, chalking, cracking, blistering, embrittlement, strength reduction, and oxidation.   Precise Control: The device ensures accurate regulation of temperature, humidity, and other environmental factors, enhancing testing precision and reliability.   User-Friendly Operation: Designed for easy installation and maintenance, the QUV tester features an intuitive interface with multi-language programming support.   Cost-Effective: The use of long-life, low-cost fluorescent UV lamps and tap water for condensation significantly reduces operational expenses.   V. Advantages in Application Rapid Evaluation: The QUV tester can simulate months or even years of outdoor exposure in a short time, enabling quick assessment of textile durability.   Enhanced Product Quality: By replicating real-world UV and environmental conditions, the tester provides reliable data to optimize product design, improve quality, and extend service life.   Broad Applicability: In addition to textiles, the QUV tester is widely used in coatings, inks, plastics, electronics, and other industries.   VI. Our Expertise As one of China's earliest manufacturers of UV weathering test chambers, our company possesses extensive experience and a mature production line, offering highly competitive pricing in the market.   Conclusion The QUV UV accelerated weathering tester holds significant value and broad application prospects in the textile industry. By simulating real-world UV exposure and environmental factors, it provides manufacturers with dependable data to refine product design, enhance quality, and prolong product lifespan.
    Mehr lesen
  • User Guide for Environmental Test Equipment
    Apr 26, 2025
    1. Basic Concepts Environmental test equipment (often referred to as "climate test chambers") simulates various temperature and humidity conditions for testing purposes.                                                                                    With the rapid growth of emerging industries such as artificial intelligence, new energy, and semiconductors, rigorous environmental testing has become essential for product development and validation. However, users often face challenges when selecting equipment due to a lack of specialized knowledge.   The following will introduce the basic parameters of the environmental test chamber, so as to help you make a better choice of products.   2. Key Technical Specifications (1) Temperature-Related Parameters 1. Temperature Range   Definition: The extreme temperature range in which the equipment can operate stably over long periods.   High-temperature range:  Standard high-temperature chambers: 200℃, 300℃, 400℃, etc.  High-low temperature chambers: High-quality models can reach 150–180℃. Practical recommendation: 130℃ is sufficient for most applications.   Low-temperature range: Single-stage refrigeration: Around -40℃. Cascade refrigeration: Around -70℃. Budget-friendly options: -20℃ or 0℃.                                         2. Temperature Fluctuation   Definition: The variation in temperature at any point within the working zone after stabilization.   Standard requirement: ≤1℃ or ±0.5℃.   Note: Excessive fluctuation can negatively impact other temperature performance metrics.   3. Temperature Uniformity   Definition: The maximum temperature difference between any two points in the working zone.   Standard requirement: ≤2℃.   Note: Maintaining this precision becomes difficult at high temperatures (>200℃).   4. Temperature Deviation   Definition: The average temperature difference between the center of the working zone and other points.   Standard requirement: ±2℃ (or ±2% at high temperatures).   5. Temperature Change Rate   Purchasing advice: Clearly define actual testing requirements. Provide detailed sample information (dimensions, weight, material, etc.). Request performance data under loaded conditions.(How many produce you going to test once?) Avoid relying solely on catalog specifications.   (2) Humidity-Related Parameters 1. Humidity Range   Key feature: A dual parameter dependent on temperature.   Recommendation: Focus on whether the required humidity level can be maintained stably.   2. Humidity Deviation   Definition: The uniformity of humidity distribution within the working zone.   Standard requirement: ±3%RH (±5%RH in low-humidity zones).   (3) Other Parameters 1. Airflow Speed   Generally not a critical factor unless specified by testing standards.   2. Noise Level   Standard values: Humidity chambers: ≤75 dB. Temperature chambers: ≤80 dB.   Office environment recommendations: Small equipment: ≤70 dB. Large equipment: ≤73 dB.   3. Purchasing Recommendations Select parameters based on actual needs—avoid over-specifying. Prioritize long-term stability in performance. Request loaded test data from suppliers. Verify the true effective dimensions of the working zone. Specify special usage conditions in advance (e.g., office environments).
    Mehr lesen
  • Zusammenfassung der LED-Testbedingungen
    Apr 22, 2025
    Was ist eine LED? Eine Leuchtdiode (LED) ist ein spezieller Diodentyp, der bei Anlegen einer Durchlassspannung monochromatisches, diskontinuierliches Licht emittiert – ein Phänomen, das als Elektrolumineszenz bekannt ist. Durch Veränderung der chemischen Zusammensetzung des Halbleitermaterials können LEDs nahes Ultraviolett, sichtbares oder infrarotes Licht erzeugen. Ursprünglich wurden LEDs hauptsächlich als Kontrollleuchten und Anzeigetafeln eingesetzt. Mit dem Aufkommen weißer LEDs werden sie jedoch nun auch in Beleuchtungsanwendungen eingesetzt. LEDs gelten als die neue Lichtquelle des 21. Jahrhunderts und bieten im Vergleich zu herkömmlichen Lichtquellen beispiellose Vorteile wie hohe Effizienz, lange Lebensdauer und Robustheit. Klassifizierung nach Helligkeit: LEDs mit Standardhelligkeit (hergestellt aus Materialien wie GaP, GaAsP) Hochhelle LEDs (hergestellt aus AlGaAs) Ultrahelle LEDs (aus anderen fortschrittlichen Materialien hergestellt) ☆ Infrarotdioden (IREDs): Senden unsichtbares Infrarotlicht aus und dienen verschiedenen Anwendungen.   Übersicht über LED-Zuverlässigkeitstests: LEDs wurden erstmals in den 1960er Jahren entwickelt und zunächst in Ampeln und Konsumgütern eingesetzt. Erst in den letzten Jahren werden sie auch für die Beleuchtung und als alternative Lichtquellen eingesetzt. Zusätzliche Hinweise zur LED-Lebensdauer: Je niedriger die Verbindungstemperatur der LED, desto länger ist ihre Lebensdauer und umgekehrt. LED-Lebensdauer bei hohen Temperaturen: 10.000 Stunden bei 74 °C 25.000 Stunden bei 63 °C Als Industrieprodukt wird für LED-Lichtquellen eine Lebensdauer von 35.000 Stunden (garantierte Nutzungsdauer) gefordert. Herkömmliche Glühbirnen haben normalerweise eine Lebensdauer von etwa 1.000 Stunden. Es wird erwartet, dass LED-Straßenlaternen über 50.000 Stunden halten. Zusammenfassung der LED-Testbedingungen: Temperaturschocktest Schocktemperatur 1 Zimmertemperatur Schocktemperatur 2 Erholungszeit Zyklen Schockmethode Bemerkungen -20℃ (5 Minuten) 2 90 °C (5 Minuten)   2 Gasschock   -30℃ (5 Minuten) 5 105 °C (5 Minuten)   10 Gasschock   -30℃ (30 Minuten)   105 °C (30 Minuten)   10 Gasschock   88℃ (20 Minuten)   -44℃ (20 Minuten)   10 Gasschock   100 °C (30 Minuten)   -40℃ (30 Minuten)   30 Gasschock   100 °C (15 Minuten)   -40℃ (15 Minuten) 5 300 Gasschock HB-LEDs 100 °C (5 Minuten)   -10℃ (5 Minuten)   300 Flüssigkeitsschock HB-LEDs   LED-Hochtemperatur-Hochfeuchtigkeitstest (THB-Test) Temperatur/Luftfeuchtigkeit Zeit Bemerkungen 40 °C/95 % relative Luftfeuchtigkeit 96 Stunden   60 °C/85 % relative Luftfeuchtigkeit 500 Stunden LED-Lebensdauertest 60 °C/90 % relative Luftfeuchtigkeit 1000 Stunden LED-Lebensdauertest 60 °C/95 % relative Luftfeuchtigkeit 500 Stunden LED-Lebensdauertest 85 °C/85 % relative Luftfeuchtigkeit 50 Stunden   85 °C/85 % relative Luftfeuchtigkeit 1000 Stunden LED-Lebensdauertest   Lebensdauertest bei Raumtemperatur 27℃ 1000 Stunden Dauerhafte Beleuchtung bei konstantem Strom   Hochtemperatur-Betriebslebensdauertest (HTOL-Test) 85℃ 1000 Stunde Dauerhafte Beleuchtung bei konstantem Strom 100℃ 1000 Stunde Dauerhafte Beleuchtung bei konstantem Strom   Niedertemperatur-Betriebslebensdauertest (LTOL-Test) -40℃ 1000 Stunde Dauerhafte Beleuchtung bei konstantem Strom -45℃ 1000 Stunde Dauerhafte Beleuchtung bei konstantem Strom   Lötbarkeitstest Testbedingung Bemerkungen Die Pins der LED (1,6 mm vom Boden des Kolloids entfernt) werden für 5 Sekunden in ein 260 °C heißes Zinnbad getaucht.   Die Pins der LED (1,6 mm vom Boden des Kolloids entfernt) werden für 6 Sekunden in ein 260+5 °C heißes Zinnbad getaucht.   Die Pins der LED (1,6 mm vom Boden des Kolloids entfernt) werden für 3 Sekunden in ein 300 °C heißes Zinnbad getaucht.     Reflow-Lötofentest 240℃ 10 Sekunden   Umwelttest (TTW-Lötbehandlung für 10 Sekunden bei einer Temperatur von 240 °C ± 5 °C durchführen) Testname Referenzstandard Siehe den Inhalt der Testbedingungen in JIS C 7021 Erholung Zyklusnummer (H) Temperaturzyklen Automobilspezifikation -40 °C ←→ 100 °C, bei einer Haltezeit von 15 Minuten 5 Minuten 5/50/100 Temperaturzyklen   60 °C/95 % RH, mit angelegtem Strom   50/100 Feuchtigkeits-Sperrvorspannung MIL-STD-883-Methode 60 °C/95 % relative Luftfeuchtigkeit, 5 V RB   50/100  
    Mehr lesen
  • IEC 68-2-18 Test R und Anleitung: Wasserprüfung
    Apr 19, 2025
    VorwortZweck dieser Prüfmethode ist die Bewertung der Widerstandsfähigkeit elektrischer und elektronischer Produkte gegenüber fallenden Tropfen (Niederschlag), auftreffendem Wasser (Strahlwasser) oder Eintauchen während Transport, Lagerung und Gebrauch. Die Prüfungen überprüfen die Wirksamkeit von Abdeckungen und Dichtungen und stellen sicher, dass Komponenten und Geräte während oder nach der Einwirkung standardisierter Wasserbedingungen weiterhin einwandfrei funktionieren. Umfang Diese Prüfmethode umfasst die folgenden Verfahren. Die Merkmale der einzelnen Prüfungen finden Sie in Tabelle 1. Prüfmethode Ra: Niederschlag Methode Ra 1: Künstlicher Niederschlag Dieser Test simuliert die Belastung von ungeschützt im Freien aufgestellten Elektroprodukten durch natürlichen Regen.Methode Ra 2: Tropfkasten Dieser Test gilt für elektrische Produkte, bei denen es im geschützten Zustand zu Kondensation oder Leckagen kommen kann, die dazu führen, dass Wasser von oben tropft. Prüfmethode Rb: WasserstrahlenMethode Rb 1: Starker Regen Simuliert die Belastung durch starken Regen oder sintflutartige Regenfälle für Produkte, die ungeschützt im Freien in tropischen Regionen platziert werden.Methode Rb 2: Sprühen Gilt für Produkte, die Wasser aus automatischen Feuerlöschsystemen oder Radspritzern ausgesetzt sind. Methode Rb 2.1: Schwingrohr Methode Rb 2.2: HandsprühdüseMethode Rb 3: Wasserstrahl Simuliert die Einwirkung von Wasseraustritt aus Schleusentoren oder Wellenschlag. Prüfmethode Rc: ImmersionBewertet die Auswirkungen eines teilweisen oder vollständigen Eintauchens während des Transports oder der Verwendung. Methode Rc 1: WassertankMethode Rc 2: Druckwasserkammer EinschränkungenDie Methode Ra 1 basiert auf natürlichen Niederschlagsbedingungen und berücksichtigt keine Niederschläge bei starkem Wind.Dieser Test ist kein Korrosionstest.Es simuliert nicht die Auswirkungen von Druckänderungen oder Temperaturschocks. TestverfahrenAllgemeine VorbereitungVor der Prüfung müssen die Prüflinge gemäß den einschlägigen Normen visuellen, elektrischen und mechanischen Prüfungen unterzogen werden. Merkmale, die die Prüfergebnisse beeinflussen (z. B. Oberflächenbehandlungen, Abdeckungen, Dichtungen), müssen überprüft werden.Methodenspezifische VerfahrenRa 1 (Künstlicher Niederschlag):Die Proben werden in einem definierten Neigungswinkel auf einem Stützrahmen montiert (siehe Abbildung 1).Der Schweregrad des Tests (Neigungswinkel, Dauer, Niederschlagsintensität, Tropfengröße) wird aus Tabelle 2 ausgewählt. Die Proben dürfen während der Prüfung um maximal 270° gedreht werden. Nach der Prüfung wird auf eindringendes Wasser geprüft.Ra 2 (Tropfkasten):Tropfhöhe (0,2–2 m), Neigungswinkel und Dauer werden gemäß Tabelle 3 eingestellt.Es wird ein gleichmäßiges Tropfen (200–300 mm/h) mit einer Tropfengröße von 3–5 mm aufrechterhalten (Abbildung 4).Rb 1 (Starker Regen):Es gelten Bedingungen mit starker Niederschlagsintensität gemäß Tabelle 4.Rb 2.1 (Schwingrohr):Düsenwinkel, Durchflussrate, Schwingung (±180°) und Dauer werden aus Tabelle 5 ausgewählt.Die Proben drehen sich langsam, um eine vollständige Benetzung der Oberfläche sicherzustellen (Abbildung 5).Rb 2,2 (Handbrause):Sprühdistanz: 0,4 ± 0,1 m; Durchflussrate: 10 ± 0,5 dm³/min (Abbildung 6).Rb 3 (Wasserstrahl):Düsendurchmesser: 6,3 mm oder 12,5 mm; Strahlabstand: 2,5 ± 0,5 m (Tabellen 7–8, Abbildung 7).Rc 1 (Wassertank):Eintauchtiefe und -dauer folgen Tabelle 9. Wasser kann Farbstoffe (z. B. Fluorescein) enthalten, um Lecks zu erkennen. Rc 2 (Druckkammer):Druck und Zeit werden gemäß Tabelle 10 eingestellt. Nach dem Test ist eine Trocknung erforderlich. TestbedingungenWasserqualität: Gefiltertes, deionisiertes Wasser (pH 6,5–7,2; spezifischer Widerstand ≥500 Ω·m).Temperatur: Anfängliche Wassertemperatur maximal 5 °C unter der Probentemperatur (max. 35 °C beim Eintauchen). Testaufbau Ra 1/Ra 2: Düsenanordnungen simulieren Regen/Tropfen (Abbildungen 2–4). Die Armaturen müssen einen Abfluss ermöglichen. Rb 2.1: Schwingrohrradius ≤1000 mm (1600 mm für große Proben).Rb 3: Strahldruck: 30 kPa (6,3 mm Düse) bzw. 100 kPa (12,5 mm Düse). DefinitionenNiederschlag (fallende Tropfen): Simulierter Regen (Tropfen >0,5 mm) oder Nieselregen (0,2–0,5 mm).Regenintensität (R): Niederschlagsmenge pro Stunde (mm/h).Endgeschwindigkeit (Vt): 5,3 m/s für Regentropfen in ruhender Luft.Berechnungen: Mittlerer Tropfendurchmesser: D v≈1,71 R0,25 mm. Mittlerer Durchmesser: D 50 = 1,21 R 0,19mm. Niederschlagsintensität: R = (V × 6)/(A × t) mm/h (wobei V = Probenvolumen in cm³, A = Kollektorfläche in dm², t = Zeit in Minuten). Hinweis: Alle Tests erfordern nach der Exposition Kontrollen auf Wassereintritt und Funktionsprüfung. Gerätespezifikationen (z. B. Düsentypen, Durchflussraten) sind für die Reproduzierbarkeit entscheidend.
    Mehr lesen
  • IEC 68-2-66 Testmethode Cx: Stationäre feuchte Wärme (druckloser gesättigter Dampf)
    Apr 18, 2025
    Vorwort Der Zweck dieser Testmethode besteht darin, ein standardisiertes Verfahren zur Bewertung der Widerstandsfähigkeit kleiner elektrotechnischer Produkte (hauptsächlich nicht hermetische Komponenten) in einer Testkammer bei hohen und niedrigen Temperaturen sowie in einer feuchten Umgebung bereitzustellen. Umfang Dieses Prüfverfahren gilt für beschleunigte Prüfungen kleiner elektrotechnischer Produkte auf feuchte Hitze. Einschränkungen Um äußere Einflüsse auf Proben, wie beispielsweise Korrosion oder Deformation, nachzuweisen, ist diese Methode nicht geeignet. Testverfahren1. Inspektion vor dem Test Die Proben müssen Sicht-, Maß- und Funktionsprüfungen gemäß den entsprechenden Normen unterzogen werden. 2. Probenplatzierung Die Proben müssen in der Prüfkammer unter Laborbedingungen hinsichtlich Temperatur, relativer Luftfeuchtigkeit und Luftdruck platziert werden. 3. Anwendung der Vorspannung (falls zutreffend) Wenn die entsprechende Norm eine Vorspannung vorschreibt, darf diese erst angelegt werden, nachdem die Probe ein thermisches und Feuchtigkeitsgleichgewicht erreicht hat. 4. Temperatur- und Feuchtigkeitserhöhung Die Temperatur wird auf den angegebenen Wert erhöht. Während dieser Zeit wird die Luft in der Kammer durch Dampf verdrängt. Temperatur und relative Luftfeuchtigkeit dürfen vorgegebene Grenzwerte nicht überschreiten. Auf der Probe darf sich kein Kondenswasser bilden. Die Stabilisierung von Temperatur und Luftfeuchtigkeit muss innerhalb von 1,5 Stunden erreicht sein. Dauert die Prüfung länger als 48 Stunden und kann die Stabilisierung nicht innerhalb von 1,5 Stunden abgeschlossen werden, muss sie innerhalb von 3,0 Stunden erreicht sein. 5. Testdurchführung Halten Sie Temperatur, Luftfeuchtigkeit und Druck gemäß der entsprechenden Norm auf den angegebenen Werten. Die Testdauer beginnt, sobald stationäre Bedingungen erreicht sind. 6. Erholung nach dem Test Nach der angegebenen Prüfdauer müssen die Kammerbedingungen wieder auf normale atmosphärische Bedingungen (1–4 Stunden) zurückgeführt werden. Temperatur und Luftfeuchtigkeit dürfen während der Wiederherstellung bestimmte Grenzwerte nicht überschreiten (natürliche Kühlung ist zulässig). Vor der weiteren Handhabung muss den Proben Zeit gegeben werden, sich vollständig zu stabilisieren. 7. Messungen während des Tests (falls erforderlich) Elektrische oder mechanische Prüfungen während der Prüfung müssen ohne Änderung der Prüfbedingungen durchgeführt werden. Vor der Wiederherstellung darf keine Probe aus der Kammer entnommen werden. 8. Inspektion nach dem TestNach der Erholung (2–24 Stunden unter Standardbedingungen) müssen die Proben gemäß der entsprechenden Norm einer Sicht-, Maß- und Funktionsprüfung unterzogen werden. --- TestbedingungenSofern nicht anders angegeben, bestehen die Testbedingungen aus den in Tabelle 1 aufgeführten Temperatur- und Dauerkombinationen. --- Testaufbau1. Kammeranforderungen Ein Temperatursensor soll die Kammertemperatur überwachen. Die Kammerluft muss vor dem Test mit Wasserdampf gespült werden. Es darf kein Kondensat auf die Proben tropfen. 2. KammermaterialienDie Kammerwände dürfen weder die Dampfqualität beeinträchtigen noch eine Korrosion der Proben verursachen. 3. TemperaturgleichmäßigkeitGesamttoleranz (räumliche Variation, Schwankung und Messfehler): ±2°C. Um die relative Feuchtigkeitstoleranz (±5 %) einzuhalten, müssen Temperaturunterschiede zwischen zwei beliebigen Punkten in der Kammer minimiert werden (≤1,5 °C), auch während des Hoch-/Herunterfahrens. 4. ProbenplatzierungDie Proben dürfen den Dampfstrom nicht behindern. Eine direkte Einwirkung von Strahlungswärme ist verboten. Wenn Vorrichtungen verwendet werden, müssen deren Wärmeleitfähigkeit und Wärmekapazität minimiert werden, um eine Beeinträchtigung der Testbedingungen zu vermeiden. Die Befestigungsmaterialien dürfen keine Verunreinigungen oder Korrosion verursachen. 3. Wasserqualität Verwenden Sie destilliertes oder deionisiertes Wasser mit: Widerstand ≥0,5 MΩ·cm bei 23 °C. pH 6,0–7,2 bei 23 °C. Kammerbefeuchter müssen vor der Wasserzufuhr durch Schrubben gereinigt werden. --- Weitere InformationenTabelle 2 enthält die Sattdampftemperaturen, die den Trockentemperaturen (100–123 °C) entsprechen. Schematische Darstellungen der Prüfeinrichtungen für Einzel- und Doppelbehälter sind in den Abbildungen 1 und 2 dargestellt. --- Tabelle 1: Testschweregrad| Temp. (°C) | RH (%) | Dauer (h, -0/+2) | Temperaturrelative LuftfeuchtigkeitZeit (Stunden, -0/+2)±2℃±5%ⅠⅡⅢ110859619240812085489619213085244896Hinweis: Der Dampfdruck bei 110 °C, 120 °C und 130 °C beträgt 0,12 MPa, 0,17 MPa bzw. 0,22 MPa. --- Tabelle 2: Gesättigte Dampftemperatur vs. relative Luftfeuchtigkeit (Trockentemperaturbereich: 100–123 °C)Sättigungstemperatur (℃)RelativLuftfeuchtigkeit (%RH)100 %95 %90 %85 %80 %75 %70 %65 %60 %55 %50 %Trockentemperatur (℃) 100 100,098,697,195,593,992,190,388,486,384,181,7101 101,099,698,196,594,893,191,289,387,285,082,6102 102,0100,699,097,595,894,092,290,288,185,983,5103 103,0101,5100,098,496,895,093,192,189,086,884,3104 104,0102,5101,099,497,795,994,192,190,087,785,2105 105,0103,5102,0100,498,796,995,093,090,988,686,1106 106,0104,5103,0101,399,697,896,093,991,889,587,0107 107,0105,5103,9102,3100,698,896,994,992,790,487,9108 108,0106,5104,9103,3101,699,897,895,893,691,388,8109 109,0107,5105,9104,3102,5100,798,896,794,592,289,7110 110,0108,5106,9105,2103,5101,799,797,795,593,190,6(Zusätzliche Spalten für %RH und Sättigungstemperatur würden gemäß der Originaltabelle folgen.) --- Wichtige Begriffe geklärt:„Druckloser gesättigter Dampf“: Umgebung mit hoher Luftfeuchtigkeit ohne Anwendung von externem Druck. „Steady-State“: Konstante Bedingungen während des gesamten Tests.
    Mehr lesen
  • Leitfaden zur Auswahl von Kammern mit konstanter Temperatur und Luftfeuchtigkeit
    Apr 06, 2025
    Sehr geehrter Kunde, Um sicherzustellen, dass Sie die kostengünstigste und praktischste Ausrüstung für Ihren Bedarf auswählen, bestätigen Sie bitte vor dem Kauf unserer Produkte die folgenden Details mit unserem Verkaufsteam: Ⅰ. ArbeitsbereichsgrößeDie optimale Testumgebung wird erreicht, wenn das Probenvolumen 1/5 der gesamten Kammerkapazität nicht überschreitet. Dies gewährleistet die genauesten und zuverlässigsten Testergebnisse. Ⅱ. Temperaturbereich und -anforderungenGeben Sie den gewünschten Temperaturbereich an.Geben Sie an, ob programmierbare Temperaturänderungen oder schnelle Temperaturzyklen erforderlich sind. Falls ja, geben Sie die gewünschte Temperaturänderungsrate an (z. B. °C/min). Ⅲ. Feuchtigkeitsbereich und -anforderungenDefinieren Sie den gewünschten Feuchtigkeitsbereich.Geben Sie an, ob niedrige Temperaturen und niedrige Luftfeuchtigkeit erforderlich sind.Wenn eine Feuchtigkeitsprogrammierung erforderlich ist, stellen Sie als Referenz ein Temperatur-Feuchtigkeits-Korrelationsdiagramm bereit. Ⅳ. LastbedingungenBefindet sich eine Ladung in der Kammer?Wenn die Last Wärme erzeugt, geben Sie die ungefähre Wärmeleistung (in Watt) an. 5. Auswahl der KühlmethodeLuftkühlung – Geeignet für kleinere Kühlsysteme und allgemeine Laborbedingungen.Wasserkühlung – Empfohlen für größere Kühlsysteme, bei denen eine Wasserversorgung verfügbar ist, da sie eine höhere Effizienz bietet. Die Auswahl sollte auf den Laborbedingungen und der lokalen Infrastruktur basieren. Ⅵ. Kammerabmessungen und PlatzierungBerücksichtigen Sie den physischen Raum, in dem die Kammer installiert wird.Stellen Sie sicher, dass die Abmessungen einen einfachen Zugang, Transport und eine einfache Wartung ermöglichen. Ⅶ. Testen Sie die RegaltragfähigkeitWenn die Proben schwer sind, geben Sie die maximale Gewichtsanforderung für das Testregal an. Ⅷ. Stromversorgung und InstallationÜberprüfen Sie die verfügbare Stromversorgung (Spannung, Phase, Frequenz).Sorgen Sie für ausreichende Stromkapazität, um Betriebsprobleme zu vermeiden. Ⅹ. Optionale Funktionen und Zubehör Unsere Standardmodelle erfüllen die allgemeinen Testanforderungen, wir bieten jedoch auch:1.Kundenspezifische Vorrichtungen2.Zusätzliche Sensoren3.Datenerfassungssysteme4.Fernüberwachungsfunktionen5.Geben Sie an, ob Sie spezielles Zubehör oder Ersatzteile benötigen. Ⅺ. Einhaltung der PrüfnormenDa die Industrienormen variieren, geben Sie bitte bei der Bestellung die geltenden Prüfnormen und -bestimmungen genau an. Geben Sie bei Bedarf detaillierte Temperatur-/Feuchtigkeitspunkte oder spezielle Leistungsindikatoren an. Ⅺ. Andere benutzerdefinierte AnforderungenWenn Sie besondere Testanforderungen haben, besprechen Sie diese mit unseren Ingenieuren, um maßgeschneiderte Lösungen zu erhalten. Ⅻ. Empfehlung: Standardmodelle vs. benutzerdefinierte ModelleStandardmodelle bieten schnellere Lieferung und Kosteneffizienz.Wir sind jedoch auch spezialisiert auf kundenspezifische Kammern und OEM-Lösungen für spezielle Anwendungen. Wenden Sie sich für weitere Unterstützung an unser Vertriebsteam, um die beste Konfiguration für Ihre Testanforderungen sicherzustellen. GUANGDONG LABCOMPANION LTD Präzisionstechnik für zuverlässige Tests
    Mehr lesen
  • Vorsichtsmaßnahmen bei der Verwendung eines Ofens im Studio
    Mar 22, 2025
    Ein Ofen ist ein Gerät, das elektrische Heizelemente verwendet, um Objekte durch Erhitzen in einer kontrollierten Umgebung zu trocknen. Er eignet sich zum Backen, Trocknen und zur Wärmebehandlung in einem Temperaturbereich von 5 °C bis 300 °C (bei manchen Modellen bis zu 200 °C) über Raumtemperatur mit einer typischen Empfindlichkeit von ±1 °C. Es gibt viele Ofenmodelle, aber ihre Grundstruktur ist ähnlich und besteht im Allgemeinen aus drei Teilen: der Kammer, dem Heizsystem und der automatischen Temperaturregelung.Im Folgenden finden Sie die wichtigsten Punkte und Vorsichtsmaßnahmen für die Verwendung eines Ofens: Ⅰ. Installation: Der Ofen sollte an einem trockenen und ebenen Ort im Innenbereich aufgestellt werden, fern von Vibrationen und korrosiven Substanzen. Elektrische Sicherheit: Sorgen Sie für eine sichere Stromversorgung, indem Sie einen Netzschalter mit ausreichender Kapazität entsprechend der Leistungsaufnahme des Ofens installieren. Verwenden Sie geeignete Netzkabel und achten Sie auf eine ordnungsgemäße Erdung. Ⅲ. Temperaturregelung: Bei Öfen mit einem Temperaturregler mit Quecksilberkontaktthermometer schließen Sie die beiden Leitungen des Kontaktthermometers an die beiden Anschlüsse an der Ofenoberseite an. Stecken Sie ein handelsübliches Quecksilberthermometer in das Entlüftungsventil (dieses Thermometer dient zur Kalibrierung des Kontaktthermometers und zur Überwachung der tatsächlichen Temperatur im Ofen). Öffnen Sie die Entlüftungsöffnung und stellen Sie das Kontaktthermometer auf die gewünschte Temperatur ein. Ziehen Sie anschließend die Schraube am Deckel fest, um die Temperatur konstant zu halten. Achten Sie darauf, die Anzeige während der Einstellung nicht über die Skala hinaus zu drehen. Ⅳ. Vorbereitung und Bedienung: Nachdem alle Vorbereitungen abgeschlossen sind, legen Sie die Proben in den Ofen, schließen Sie die Stromversorgung an und schalten Sie ihn ein. Die rote Kontrollleuchte leuchtet auf und zeigt damit an, dass die Kammer aufheizt. Sobald die Temperatur den Sollwert erreicht hat, erlischt die rote Leuchte und die grüne Leuchte leuchtet auf. Dies zeigt an, dass der Ofen in die Konstanttemperaturphase eingetreten ist. Der Ofen muss jedoch weiterhin überwacht werden, um Fehler bei der Temperaturregelung zu vermeiden. Ⅴ. Probenplatzierung: Achten Sie beim Platzieren der Proben darauf, dass diese nicht zu dicht gepackt sind. Legen Sie die Proben nicht auf die Wärmeableitungsplatte, da dies den Aufwärtsstrom der heißen Luft behindern kann. Vermeiden Sie das Einbrennen brennbarer, explosiver, flüchtiger oder ätzender Substanzen. Ⅵ. Beobachtung: Um die Proben im Inneren der Kammer zu beobachten, öffnen Sie die Außentür und schauen Sie durch die Glastür. Öffnen Sie die Tür jedoch nur so oft, wie Sie möchten, um die konstante Temperatur nicht zu beeinträchtigen. Insbesondere bei Temperaturen über 200 °C kann das Öffnen der Tür durch plötzliche Abkühlung zu Glasbrüchen führen. Belüftung: Bei Öfen mit Ventilator muss dieser sowohl während der Heiz- als auch der Konstanttemperaturphase eingeschaltet sein. Andernfalls kann es zu einer ungleichmäßigen Temperaturverteilung im Garraum und zu Schäden an den Heizelementen kommen. Ⅷ. Abschalten: Schalten Sie nach Gebrauch aus Sicherheitsgründen umgehend die Stromversorgung ab. Ⅸ. Sauberkeit: Halten Sie das Innere und Äußere des Ofens sauber. Ⅹ. Temperaturgrenze: Überschreiten Sie nicht die maximale Betriebstemperatur des Ofens. XI. Sicherheitsmaßnahmen: Um Verbrennungen zu vermeiden, verwenden Sie beim Umgang mit den Proben spezielle Werkzeuge. Zusätzliche Hinweise: 1. Regelmäßige Wartung: Überprüfen Sie regelmäßig die Heizelemente, Temperatursensoren und Steuerungssysteme des Ofens, um sicherzustellen, dass sie ordnungsgemäß funktionieren. 2. Kalibrierung: Kalibrieren Sie das Temperaturkontrollsystem regelmäßig, um die Genauigkeit aufrechtzuerhalten. 3. Belüftung: Sorgen Sie für eine ausreichende Belüftung des Studios, um Hitze- und Rauchentwicklung zu vermeiden. 4. Notfallmaßnahmen: Machen Sie sich mit den Verfahren zur Notabschaltung vertraut und halten Sie für den Fall eines Unfalls einen Feuerlöscher bereit. Durch die Einhaltung dieser Richtlinien können Sie die sichere und effektive Nutzung eines Ofens in Ihrem Studio gewährleisten.
    Mehr lesen
  • Beschleunigte Umwelttesttechnologie
    Mar 21, 2025
    Herkömmliche Umweltprüfungen basieren auf der Simulation realer Umweltbedingungen, den sogenannten Umweltsimulationsprüfungen. Diese Methode zeichnet sich durch die Simulation realer Umgebungen und die Berücksichtigung von Designtoleranzen aus, um sicherzustellen, dass das Produkt den Test besteht. Zu den Nachteilen zählen jedoch die geringe Effizienz und der hohe Ressourcenverbrauch. Accelerated Environmental Testing (AET) ist eine neue Technologie für Zuverlässigkeitstests. Dieser Ansatz hebt sich von traditionellen Zuverlässigkeitstestmethoden ab, indem er einen Stimulationsmechanismus einführt, der die Testzeit deutlich verkürzt, die Effizienz verbessert und die Testkosten senkt. Die Forschung und Anwendung von AET haben erhebliche praktische Bedeutung für die Weiterentwicklung der Zuverlässigkeitstechnik. Beschleunigte UmweltprüfungBei Stimulationstests werden Belastungen angewendet und Umgebungsbedingungen schnell erkannt, um potenzielle Produktfehler auszuschließen. Die bei diesen Tests angewendeten Belastungen simulieren keine realen Umgebungen, sondern zielen auf die Maximierung der Stimulationseffizienz ab. Beschleunigte Umweltprüfungen sind eine Form von Stimulationsprüfungen, bei denen erhöhte Belastungsbedingungen zur Bewertung der Produktzuverlässigkeit eingesetzt werden. Der Grad der Beschleunigung bei solchen Tests wird typischerweise durch einen Beschleunigungsfaktor dargestellt, der als Verhältnis der Lebensdauer eines Geräts unter natürlichen Betriebsbedingungen zu seiner Lebensdauer unter beschleunigten Bedingungen definiert ist. Die angewandten Belastungen können Temperatur, Vibration, Druck, Feuchtigkeit (die sogenannten „vier umfassenden Belastungen“) und weitere Faktoren umfassen. Kombinationen dieser Belastungen sind in bestimmten Szenarien oft effektiver. Hochfrequente Temperaturwechsel und breitbandige Zufallsschwingungen gelten als die wirksamsten Formen der Stimulationsbelastung. Es gibt zwei Hauptarten beschleunigter Umweltprüfungen: Accelerated Life Testing (ALT) und Reliability Enhancement Testing (RET). Zuverlässigkeitsverbesserungstests (RET) dienen dazu, frühzeitige, produktbedingte Fehler aufzudecken und die Widerstandsfähigkeit des Produkts gegen zufällige Ausfälle während seiner effektiven Lebensdauer zu ermitteln. Beschleunigte Lebensdauertests zielen darauf ab, herauszufinden, wie, wann und warum verschleißbedingte Ausfälle in Produkten auftreten. Nachfolgend finden Sie eine kurze Erläuterung dieser beiden grundlegenden Typen. 1. Beschleunigte Lebensdauerprüfung (ALT): UmweltprüfkammerBeschleunigte Lebensdauertests werden an Komponenten, Materialien und Herstellungsprozessen durchgeführt, um deren Lebensdauer zu bestimmen. Ziel ist nicht die Aufdeckung von Defekten, sondern die Identifizierung und Quantifizierung der Ausfallmechanismen, die am Ende der Nutzungsdauer zum Produktverschleiß führen. Bei Produkten mit langer Lebensdauer muss der ALT-Test über einen ausreichend langen Zeitraum durchgeführt werden, um die Lebensdauer genau abschätzen zu können. ALT basiert auf der Annahme, dass die Eigenschaften eines Produkts unter kurzfristigen, hohen Belastungsbedingungen mit denen unter langfristigen, niedrigen Belastungsbedingungen übereinstimmen. Um die Testzeit zu verkürzen, werden beschleunigte Belastungen angewendet, eine Methode, die als Highly Accelerated Life Testing (HALT) bekannt ist. ALT liefert wertvolle Daten über den zu erwartenden Verschleiß von Produkten. Dies ist im heutigen Markt von entscheidender Bedeutung, da Verbraucher zunehmend Informationen über die Lebensdauer ihrer Produkte verlangen. Die Abschätzung der Produktlebensdauer ist nur eine der Anwendungen von ALT. Es ermöglicht Designern und Herstellern, ein umfassendes Verständnis des Produkts zu erlangen, kritische Komponenten, Materialien und Prozesse zu identifizieren und notwendige Verbesserungen und Kontrollen vorzunehmen. Darüber hinaus schaffen die aus diesen Tests gewonnenen Daten Vertrauen bei Herstellern und Verbrauchern. ALT wird normalerweise an Produktproben durchgeführt. 2. Zuverlässigkeitsverbesserungstests (RET)Zuverlässigkeitsverbesserungstests gibt es in verschiedenen Formen und Bezeichnungen, wie z. B. Stufenstresstests, Stress-Lebensdauertests (STRIEF) und Highly Accelerated Life Testing (HALT). Ziel von RET ist die systematische Anwendung zunehmender Umwelt- und Betriebsbelastungen, um Ausfälle zu provozieren, Konstruktionsschwächen aufzudecken und so die Zuverlässigkeit des Produktdesigns zu bewerten. Daher sollte RET frühzeitig im Produktdesign- und -entwicklungszyklus implementiert werden, um Designänderungen zu ermöglichen.  Zuverlässigkeitsforscher stellten bereits Anfang der 1980er Jahre fest, dass erhebliche verbleibende Konstruktionsfehler erhebliches Potenzial für Zuverlässigkeitsverbesserungen bieten. Kosten und Entwicklungszykluszeit sind zudem entscheidende Faktoren im heutigen Wettbewerbsmarkt. Studien haben gezeigt, dass RET eine der besten Methoden zur Lösung dieser Probleme darstellt. Es erreicht im Vergleich zu herkömmlichen Methoden eine höhere Zuverlässigkeit und liefert, was noch wichtiger ist, frühzeitige Erkenntnisse zur Zuverlässigkeit in kurzer Zeit – im Gegensatz zu herkömmlichen Methoden, die ein verlängertes Zuverlässigkeitswachstum (TAAF) erfordern, wodurch Kosten gesenkt werden.
    Mehr lesen
  • BETRIEBSRICHTLINIEN FÜR FEUCHTIGKEITS- UND TEMPERATURPRÜFKAMMER
    Mar 19, 2025
    1.GeräteübersichtDie Feuchte- und Temperaturprüfkammer, auch bekannt als Umweltsimulationsprüfgerät, ist ein Präzisionsgerät, das die strikte Einhaltung von Betriebsprotokollen erfordert. Als elektrisches Gerät der Klasse II gemäß Sicherheitsnorm IEC 61010-1 sind seine Zuverlässigkeit (±0,5 °C Temperaturstabilität), Präzision (±2 % relative Luftfeuchtigkeitsgenauigkeit) und Betriebsstabilität entscheidend für die Erzielung von ISO/IEC 17025-konformen Testergebnissen.2. Sicherheitsprotokolle vor der Operation2.1 Elektrische Anforderungen Stromversorgung: 220 V AC ±10 %, 50/60 Hz mit unabhängiger Erdung (Erdungswiderstand ≤4 Ω) Not-Aus-Schaltung und Überstromschutz installieren (empfohlen 125 % des Nennstroms) Implementieren Sie einen RCD (Residual Current Device) mit einem Auslösestrom von ≤30 mA2.2 Installationsspezifikationen Freigabeanforderungen: Hinten: ≥500mm Seitlich: ≥300mm Vertikal: ≥800mm Umgebungsbedingungen: Temperatur: 15-35°C Luftfeuchtigkeit: ≤85 % relative Luftfeuchtigkeit (nicht kondensierend) Luftdruck: 86-106 kPa  3.Betriebliche Einschränkungen3.1 Verbotene Umgebungen Explosive Atmosphären (ATEX Zone 0/20 verboten) Korrosive Umgebungen (HCl-Konzentration > 1 ppm) Gebiete mit hohem Feinstaubanteil (PM2,5 >150μg/m³)Starke elektromagnetische Felder (>3V/m bei 10kHz-30MHz)4. Inbetriebnahmeverfahren4.1 Checkliste vor dem Start Überprüfen Sie die Integrität der Kammer (strukturelle Deformation ≤0,2 mm/m). Bestätigen Sie die Gültigkeit der PT100-Sensorkalibrierung (NIST-rückführbar) Kältemittelstand prüfen (R404A ≥85 % der Nennfüllung) Validierung der Neigung des Entwässerungssystems (≥3° Gefälle)5.Betriebsrichtlinien5.1 Parametereinstellung Temperaturbereich: -70°C bis +150°C (Gradient ≤3°C/min) Feuchtigkeitsbereich: 20 % RH bis 98 % RH (Taupunktüberwachung erforderlich >85 % RH) Programmschritte: ≤120 Segmente mit Ramp-Soak-Steuerung 5.2 Sicherheitsverriegelungen Tür-Offen-Abschaltung (Aktivierung innerhalb von 0,5s) Übertemperaturschutz (zwei redundante Sensoren) Erkennung eines Feuchtigkeitssensorfehlers (Aktivierung des Auto-Dry-Modus)6.Wartungsprotokoll6.1 Tägliche Wartung Reinigung der Kondensatorspule (Druckluft 0,3–0,5 MPa) Prüfung des Wasserwiderstands (≥1MΩ·cm) Türdichtungsprüfung (Leckrate ≤0,5 % Vol./h) 6.2 Regelmäßige Wartung Kompressorölanalyse (alle 2.000 Stunden) Druckprüfung des Kältemittelkreislaufs (jährlich) Kalibrierzyklus: Temperatur: ±0,3°C (jährlich) Luftfeuchtigkeit: ±1,5 % relative Luftfeuchtigkeit (halbjährlich)7.FehlerreaktionsmatrixSymptomprioritätPrioritätSofortmaßnahmenTechnische AntwortUnkontrollierte ErwärmungP1Not-Aus aktivierenÜberprüfen Sie den SSR-Betrieb (Vf
    Mehr lesen
  • Umwelttestmethoden
    Mar 15, 2025
    "Umwelttests" bezieht sich auf den Prozess der Belichtung von Produkten oder Materialien unter bestimmten Parametern, um ihre Leistung unter potenzieller Speicher-, Transport- und Nutzungsbedingungen zu bewerten. Umwelttests können in drei Arten eingeteilt werden: natürliche Expositionstests, Feldtests und künstliche Simulationstests. Die ersten beiden Testtypen sind kostspielig, zeitaufwändig und fehlt häufig wiederholbarkeit und Regelmäßigkeit. Sie bieten jedoch eine genauere Reflexion der realen Nutzungsbedingungen, was sie zur Grundlage für künstliche Simulationstests macht. Umwelttests für künstliche Simulationen werden bei der Qualitätsprüfung häufig eingesetzt. Um die Vergleichbarkeit und Reproduzierbarkeit von Testergebnissen sicherzustellen, wurden standardisierte Methoden für grundlegende Umwelttests von Produkten festgelegt. Im Folgenden finden Sie die Methoden für Umwelttests, die durch die Verwendung erreicht werden können Umwelttestkammer:(1) Hohe und niedrige Temperaturtests: Wird verwendet, um die Anpassungsfähigkeit von Produkten an die Lagerung und/oder die Verwendung unter hohen und niedrigen Temperaturbedingungen zu bewerten oder zu bestimmen. (2) Thermischer Schock Testen: Bestimmt die Anpassungsfähigkeit von Produkten an Einzel- oder Mehrfachtemperaturänderungen und die strukturelle Integrität unter solchen Bedingungen. (3) Feuchte Wärmeprüfung: In erster Linie verwendet, um die Anpassungsfähigkeit von Produkten an feuchte Wärmebedingungen (mit oder ohne Kondensation) zu bewerten, insbesondere die Schwerpunkt auf Änderungen der elektrischen und mechanischen Leistung. Es kann auch den Widerstand des Produkts gegen bestimmte Arten von Korrosion bewerten. Konstante feuchte Wärmetests: Typischerweise für Produkte verwendet, bei denen die Feuchtigkeitsabsorption oder -adsorption der primäre Mechanismus ist, ohne signifikante Atemwegseffekte. In diesem Test wird bewertet, ob das Produkt seine erforderliche elektrische und mechanische Leistung unter hohen Temperatur- und Luftfeuchtigkeitsbedingungen beibehalten kann oder ob Versiegelungs- und Isoliermaterialien einen angemessenen Schutz bieten. Zyklischer Feuchtigkeitswärmetest: Ein beschleunigter Umwelttest zur Bestimmung der Anpassungsfähigkeit des Produkts an zyklische Temperatur- und Feuchtigkeitsänderungen, die häufig zu einer Oberflächenkondensation führen. Dieser Test nutzt den "Atemeffekt" des Produkts aufgrund von Temperatur- und Luftfeuchtigkeitsänderungen, um die internen Feuchtigkeitsniveaus zu verändern. Das Produkt wird in einer zyklischen Feuchterwärmekammer, die gemäß den technischen Spezifikationen wiederholt wird, Erwärmung, hohe Temperatur, Kühlung und niedrige Temperatur unterzogen. Raumtemperatur Feuchte Wärmeprüfung: durchgeführt unter Standardtemperatur und hohen relativen Luftfeuchtigkeitsbedingungen. (4) Korrosionstest: Bewertet die Resistenz des Produkts gegen Salzwasser oder industrielle atmosphärische Korrosion, die häufig in elektrischen, elektronischen, leichten Industrie- und Metallmaterialprodukten verwendet werden. Korrosionstests umfassen atmosphärische Expositionskorrosionstests und künstliche Beschleunigungskorrosionstests. Um die Testzeit zu verkürzen, wird häufig künstliche Beschleunigungskorrosionstests wie neutrale Salzspray -Tests verwendet. Salzspray-Tests bewerten hauptsächlich die Korrosionsbeständigkeit von schützenden dekorativen Beschichtungen in salzbeladenen Umgebungen und bewertet die Qualität verschiedener Beschichtungen. (5) Schimmelpilzprüfung: Produkte, die für längere Zeit in hohen Temperatur- und Feuchtigkeitsumgebungen gespeichert oder verwendet werden, können Schimmel auf ihren Oberflächen entwickeln. Schimmelpilzhyphen können Feuchtigkeit absorbieren und organische Säuren absondern, die Isolationseigenschaften abbauen, die Festigkeit verringern, die optischen Eigenschaften von Glas, beschleunigen Metallkorrosion und das Aussehen des Produkts, das häufig von unangenehmen Gerüchen begleitet wird. Schimmelpilzprüfungen bewerten das Ausmaß des Schimmelpilzwachstums und die Auswirkungen auf die Produktleistung und die Benutzerfreundlichkeit. (6) Versiegelungstests: Bestimmt die Fähigkeit des Produkts, den Eindringen von Staub, Gasen und Flüssigkeiten zu verhindern. Die Versiegelung kann als Schutzfähigkeit des Produktgehäuses verstanden werden. Die internationalen Standards für elektrische und elektronische Produktgehäuse umfassen zwei Kategorien: Schutz gegen feste Partikel (z. B. Staub) und Schutz vor Flüssigkeiten und Gasen. Staubprüfung prüft die Versiegelungsleistung und die betriebliche Zuverlässigkeit von Produkten in sandigen oder staubigen Umgebungen. Gas- und Flüssigversiegelungstests bewerten die Fähigkeit des Produkts, unter Bedingungen, die schwerer sind als normale Betriebsbedingungen, zu verhindern. (7) Vibrationstests: Bewertet die Anpassungsfähigkeit des Produkts an sinusförmige oder zufällige Schwingungen und bewertet die strukturelle Integrität. Das Produkt ist in einer Vibrationstesttabelle fixiert und Vibrationen entlang von drei gegenseitig senkrechten Achsen unterzogen. (8) Alterungstests: Bewertet die Resistenz von Polymermaterialprodukten gegenüber Umweltbedingungen. Abhängig von den Umgebungsbedingungen umfassen Alterungstests atmosphärische Alterung, Wärmealterung und Ozonalterungstests. Atmosphärische Alterungstests: Beinhaltet die Exposition von Proben an atmosphärische Bedingungen im Freien für einen bestimmten Zeitraum, die Beobachtung von Leistungsänderungen und die Bewertung der Wetterbeständigkeit. Die Tests sollten an Expositionsstellen im Freien durchgeführt werden, die die schwersten Bedingungen eines bestimmten Klimas oder ungefähren tatsächlichen Anwendungsbedingungen darstellen. Wärmealterungstests: Beinhaltet das Platzieren von Proben für einen bestimmten Zeitraum in eine thermische Alterungskammer, dann das Entfernen und Testen ihrer Leistung unter definierten Umgebungsbedingungen, wobei die Ergebnisse mit der Leistung vor dem Test verglichen werden. (9) Transportverpackungstests: Produkte, die in die Vertriebskette gelangen, erfordern häufig Transportverpackungen, insbesondere Präzisionsmaschinen, Instrumente, Haushaltsgeräte, Chemikalien, landwirtschaftliche Produkte, Pharmazeutika und Lebensmittel. Die Transportverpackungstests bewertet die Fähigkeit der Verpackung, den dynamischen Druck-, Auswirkungs-, Vibrations-, Reibung, Temperatur- und Feuchtigkeitsänderungen sowie deren Schutzfähigkeit für den Inhalt zu standhalten.  Diese standardisierten Testmethoden stellen sicher, dass Produkte verschiedene Umweltbelastungen standhalten und zuverlässige Leistung und Haltbarkeit in realen Anwendungen bieten.
    Mehr lesen
  • Sechs Hauptstrukturen und Betriebsprinzipien der konstanten Temperatur- und Feuchtigkeitstestkammern
    Mar 13, 2025
    KühlsystemDas Kühlsystem ist eine der kritischen Komponenten von a Umfassende Testkammer. Im Allgemeinen umfassen Kühlmethoden mechanische Kühlung und Hilfsflüssigstickstoffkühlung. Die mechanische Kühlung verwendet einen Dampfkompressionszyklus, der hauptsächlich aus Kompressor, Kondensator, Drosselmechanismus und Verdampfer besteht. Wenn die erforderliche Niedertemperatur -55 ° C erreicht ist, ist einstufiges Kühlung nicht ausreichend. Daher verwenden die konstante Temperatur- und Feuchtigkeitskammern von LabCompanion typischerweise ein Kaskadenkühlsystem. Das Kühlsystem ist in zwei Teile unterteilt: den Hochtemperaturabschnitt und den Abschnitt mit niedriger Temperatur, von denen jedes ein relativ unabhängiges Kühlsystem ist. Im Hochtemperaturabschnitt verdunstet das Kältemittel und absorbiert Wärme aus dem Kältemittel des niedrigen Temperaturabschnitts, wodurch es verdampft. Im Abschnitt Niedertemperatur verdampft das Kältemittel und absorbiert Wärme aus der Luft in der Kammer, um Abkühlung zu erzielen. Die Hochtemperatur- und Temperaturabschnitte sind durch einen Verdunstungskondensator verbunden, der als Kondensator für den Hochtemperaturabschnitt und den Verdampfer für den Abschnitt mit niedrigem Temperatur dient. HeizsystemDas Heizsystem der Testkammer ist im Vergleich zum Kühlsystem relativ einfach. Es besteht hauptsächlich aus Hochleistungswiderstandsdrähten. Aufgrund der hohen Heizrate, die von der Testkammer erforderlich ist, ist das Heizsystem mit erheblicher Leistung ausgelegt und Heizungen sind auch auf der Grundplatte der Kammer installiert. SteuerungssystemDas Kontrollsystem ist der Kern der umfassenden Testkammer, die kritische Indikatoren wie Heizrate und Präzision bestimmt. Die meisten modernen Testkammern verwenden PID -Controller, während einige eine Kombination aus PID und Fuzzy -Kontrolle verwenden. Da das Steuerungssystem hauptsächlich auf Software basiert, arbeitet es im Allgemeinen ohne Probleme während der Verwendung. LuftfeuchtigkeitssystemDas Luftfeuchtigkeitssystem ist in zwei Subsysteme unterteilt: Befeuchtung und Entfeuchtung. Die Befeuchtung wird typischerweise durch Dampfinjektion erreicht, wobei Dampf mit niedrigem Druck direkt in den Testraum eingeführt wird. Diese Methode bietet eine starke Luftbefeuchtungskapazität, eine schnelle Reaktion und eine präzise Kontrolle, insbesondere bei Kühlprozessen, bei denen eine erzwungene Befeuchtung erforderlich ist. Die Entfeuchtung kann durch zwei Methoden erreicht werden: mechanische Kühlung und Entfeuchtung der Trockenmittel. Die Entfeuchtung der mechanischen Kühlung erfolgt, indem die Luft unter ihrem Taupunkt abkühlt wird, wodurch überschüssige Feuchtigkeit kondensiert und damit die Luftfeuchtigkeit verringert wird. Die Entfeuchtung des Austrocknens besteht darin, Luft aus der Kammer auszupumpen, trockene Luft zu injizieren und die feuchte Luft durch ein Trockenmittel zum Trocknen zu recyceln, bevor sie wieder in die Kammer eingeführt wird. Die umfassendsten Testkammern verwenden die erstere Methode, während der letztere spezialisierte Anwendungen vorbehalten ist, bei denen TEW -Punkte unter 0 ° C erforderlich sind, wenn auch zu höheren Kosten. SensorenZu den Sensoren gehören in erster Linie Temperatur- und Feuchtigkeitssensoren. Platinwiderstandsthermometer und Thermoelemente werden üblicherweise für die Temperaturmessung verwendet. Die Feuchtigkeitsmessmethoden umfassen das Trockenbirnenthermometer und elektronische Festkörper-Sensoren. Aufgrund der geringeren Genauigkeit der Trockenbirnenmethode ersetzen Festkörpersensoren sie zunehmend in modernen konstanten Temperatur- und Feuchtigkeitskammern. LuftzirkulationssystemDas Luftzirkulationssystem besteht typischerweise aus einem Zentrifugalventilator und einem Motor, der es antreibt. Dieses System sorgt für die kontinuierliche Zirkulation der Luft innerhalb der Testkammer und hält die gleichmäßige Temperatur- und Feuchtigkeitsverteilung bei.
    Mehr lesen
1 2 3 4 5 6 7 8 9 10 16 17
Insgesamt 17Seiten

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns