Double 85 Zuverlässigkeits-Umwelttest bei konstanter Temperatur und Luftfeuchtigkeit (THB)Zuerst Hochtemperatur- und FeuchtigkeitstestWHTOL (Wet High Temperature Operating Life) ist ein üblicher Umweltbelastungsbeschleunigungstest, normalerweise 85 °C und 85 % relative Luftfeuchtigkeit, der im Allgemeinen gemäß der Norm IEC 60068-2-67-2019 durchgeführt wird. Die Testbedingungen sind in der Tabelle dargestellt.Zweitens das Testprinzip„Doppelter 85-Test“ ist einer der Zuverlässigkeits-Umwelttests, der hauptsächlich für Boxen mit konstanter Temperatur und Luftfeuchtigkeit verwendet wird, d Alterung des Testprodukts. Obwohl der Testprozess einfach ist, ist der Test eine wichtige Methode zur Bewertung vieler Eigenschaften des Testprodukts und hat sich daher in verschiedenen Branchen zu einer unverzichtbaren Zuverlässigkeits- und Umwelttestbedingung entwickelt.Vergleichen Sie nach der Alterung des Produkts bei 85 °C/85 % relativer Luftfeuchtigkeit die Leistungsänderungen des Produkts vor und nach der Alterung, z. B. die photoelektrischen Leistungsparameter der Lampe, die mechanischen Eigenschaften des Materials, den Gelbindex usw. Je kleiner der Unterschied, desto besser, um die Hitze- und Feuchtigkeitsbeständigkeit des Produkts zu testen.Beim Betrieb in einer Umgebung mit kontinuierlich hohen Temperaturen kann es zu einem thermischen Ausfall des Produkts kommen, und einige feuchtigkeitsempfindliche Geräte versagen in einer Umgebung mit hoher Luftfeuchtigkeit. Der Dual-85-Test kann die thermische Belastung testen, die das Produkt bei hoher Luftfeuchtigkeit erzeugt, und seine Fähigkeit, einem langfristigen Eindringen von Feuchtigkeit zu widerstehen. Beispielsweise ist der häufige Ausfall verschiedener Produkte in der feuchten Wetterperiode im Süden hauptsächlich auf die schlechte Temperatur- und Feuchtigkeitsbeständigkeit der Produkte zurückzuführen.3. Experimentelle FaktorenIn der LED-Beleuchtungsindustrie haben viele Hersteller die Double-85-Testergebnisse als wichtiges Mittel zur Beurteilung der Qualität von Lampen genutzt. Verschiedene mögliche Gründe, warum LED-Lampen den Dual-85-Test nicht bestehen, sind:1. Lampenstromversorgung: schlechte Hitzebeständigkeit des Gehäuses, Gefahr eines Kurzschlusses im Stromkreis, Ausfall des Schutzmechanismus usw.2. Lampenstruktur: unangemessenes Design des Wärmeableitungskörpers, Installationsprobleme, Materialien sind nicht beständig gegen hohe Temperaturen.3. Lampenlichtquelle: schlechte Feuchtigkeitsbeständigkeit, Alterung des Verpackungsklebers, hohe Temperaturbeständigkeit.Wenn Sie auf eine besondere Einsatzumgebung stoßen, z. B. wenn die Temperatur in der Arbeitsumgebung hoch ist, müssen Sie die Beständigkeit gegen hohe und niedrige Temperaturen testen. Die Testmethode kann sich auf das Testprojekt für hohe und niedrige Temperaturen beziehen.4. Kunden bedienen01. KundengruppeLED-Beleuchtungsfabrik, LED-Kraftwerk, LED-Verpackungsfabrik02. NachweismittelPrüfkammer für konstante Temperatur und Luftfeuchtigkeit03. ReferenzstandardsTests bei konstanter Temperatur und Luftfeuchtigkeit für elektrische und elektronische Produkte – Umweltprüfungen – Teil 2: Testmethoden – Testkabine: Test bei konstanter Temperatur und Luftfeuchtigkeit GB/T 2423.3-2006.04. Serviceinhalte4.1 Beachten Sie die Norm, führen Sie einen doppelten 85-Test für das Produkt durch und stellen Sie den Testergebnisbericht des Dritten bereit.4.2 Bereitstellung der Analyse und des Verbesserungsplans des Produkts durch den Double 85-Test.
EinbrennofenBurn-in ist ein elektrischer Stresstest, bei dem Spannung und Temperatur eingesetzt werden, um den elektrischen Ausfall eines Geräts zu beschleunigen. Das Einbrennen simuliert im Wesentlichen die Betriebslebensdauer des Geräts, da die während des Einbrennens angelegte elektrische Erregung die ungünstigste Vorspannung widerspiegeln kann, der das Gerät im Laufe seiner Nutzungsdauer ausgesetzt sein wird. Abhängig von der verwendeten Einbrenndauer können sich die erhaltenen Zuverlässigkeitsinformationen auf die frühe Lebensdauer oder den Verschleiß des Geräts beziehen. Das Einbrennen kann als Zuverlässigkeitsüberwachung oder als Produktionsscreening verwendet werden, um potenzielle Kindersterblichkeit aus der Charge herauszufiltern.Das Einbrennen erfolgt normalerweise bei 125 °C, wobei die Proben elektrisch angeregt werden. Der Einbrennvorgang wird durch die Verwendung von Einbrennplatten (siehe Abb. 1) erleichtert, auf die die Proben geladen werden. Diese Einbrennplatten werden dann in den Einbrennofen eingesetzt (siehe Abb. 2), der die Proben mit den erforderlichen Spannungen versorgt und gleichzeitig die Ofentemperatur bei 125 °C hält. Die angelegte elektrische Vorspannung kann entweder statisch oder dynamisch sein. abhängig vom beschleunigten Ausfallmechanismus.Abbildung 1. Foto von unbestückten und mit Sockeln bestückten EinbrennplatinenDie Betriebslebenszyklusverteilung einer Gerätepopulation kann als Badewannenkurve modelliert werden, wenn die Ausfälle auf der y-Achse gegen die Betriebslebensdauer auf der x-Achse aufgetragen werden. Die Badewannenkurve zeigt, dass die höchsten Ausfallraten bei einer Gerätepopulation in der frühen Phase des Lebenszyklus bzw. der frühen Lebensdauer sowie in der Abnutzungsphase des Lebenszyklus auftreten. Zwischen der frühen Lebensdauer und der Abnutzungsphase liegt ein langer Zeitraum, in dem die Geräte nur sehr selten ausfallen. Abbildung 2. EinbrennöfenWie der Name schon sagt, wird der ELF-Monitor (Early Life Failure) zur Überwachung potenzieller Frühversagen durchgeführt. Die Dauer beträgt höchstens 168 Stunden, normalerweise jedoch nur 48 Stunden. Elektrische Ausfälle nach dem Einbrennen des ELF-Monitors werden als Frühausfälle oder Kindersterblichkeit bezeichnet, was bedeutet, dass diese Geräte vorzeitig ausfallen, wenn sie im normalen Betrieb verwendet werden.Der HTOL-Test (High Temperature Operating Life) ist das Gegenteil des ELF-Monitor-Einbrennens und testet die Zuverlässigkeit der Proben in ihrer Abnutzungsphase. HTOL wird für eine Dauer von 1000 Stunden durchgeführt, mit Zwischenmesspunkten bei 168 H und 500 H. Obwohl die an die Proben angelegte elektrische Anregung oft durch Spannungen definiert wird, werden durch Strom (wie Elektromigration) und elektrische Felder (wie dielektrischer Bruch) beschleunigte Fehlermechanismen verständlicherweise auch durch Einbrennen beschleunigt.
Lab Companion-Schnelltemperaturwechsel-TestkammerEinführung von Lab CompanionMit über 20 Jahren Erfahrung, Laborbegleiter ist ein erstklassiger Hersteller von Klimakammern und ein versierter Lieferant schlüsselfertiger Testsysteme und -geräte. Alle unsere Kammern bauen auf dem Ruf von Lab Companion für lange Lebensdauer und außergewöhnliche Zuverlässigkeit auf. Lab Companion hat im Hinblick auf Design, Herstellung und Service ein Qualitätsmanagementsystem eingerichtet, das der internationalen Qualitätssystemnorm ISO 9001:2008 entspricht. Das Gerätekalibrierungsprogramm von Lab Companion ist von A2LA nach dem internationalen Standard ISO 17025 und dem amerikanischen Nationalstandard ANSI/NCSL-Z-540-1 akkreditiert. A2LA ist Vollmitglied und Unterzeichner der International Laboratory Accreditation Cooperation (ILAC), der Asia Pacific Laboratory Accreditation (APLAC) und der European Cooperation for Accreditation (EA). Die Umwelttestkammern der SE-Serie von Lab Companion bieten ein deutlich verbessertes Luftstromsystem, das bessere Gradienten und verbesserte Änderungsraten der Produkttemperatur bietet. Diese Kammern nutzen den Flaggschiff-8800-Programmierer/Controller von Thermotron mit einem hochauflösenden 12,1-Zoll-Flachbildschirm mit Touchscreen-Benutzeroberfläche, erweiterten Funktionen zur grafischen Darstellung, Datenprotokollierung, Bearbeitung, Zugriff auf die Bildschirmhilfe und langfristiger Datenspeicherung auf der Festplatte.Wir bieten nicht nur Produkte von höchster Qualität, sondern bieten auch fortlaufenden Support, der dafür sorgt, dass Sie lange nach dem ersten Verkauf einsatzbereit bleiben. Wir bieten einen direkten Werksservice vor Ort mit einem umfangreichen Lagerbestand der Teile, die Sie möglicherweise benötigen. LeistungTemperaturbereich: -70°C bis +180°CLeistung: Bei einer Aluminiumlast von 23 kg (IEC60068-3-5) beträgt die Anstiegsrate von +85 °C auf -40 °C 15 °C/Minute; Die Abkühlgeschwindigkeit von -40°C bis +85°C beträgt ebenfalls 15℃/min.Temperaturregelung: ± 1 °C Trockenkugeltemperaturen vom Kontrollpunkt nach Stabilisierung am KontrollsensorDie Leistung basiert auf einer Umgebungstemperatur von 75 °F (23,9 °C) und 50 % relativer LuftfeuchtigkeitKühl-/Heizleistung basierend auf der Messung am Regelfühler im ZuluftstromKonstruktionInnereNichtmagnetischer Edelstahl der Serie 300 mit hohem NickelgehaltHeliarc-geschweißte Innennähte sorgen für eine hermetische Abdichtung des LinersEcken und Nähte sind so gestaltet, dass sie sich bei extremen Temperaturen ausdehnen und zusammenziehen könnenDer Kondensatablauf befindet sich im Linerboden und unter dem KlimatisierungsplenumDer Kammerboden ist vollständig verschweißt„Ultra-Lite“-Glasfaserisolierung, die sich nicht absetztEin verstellbares Innenregal aus Edelstahl ist StandardAußenGesenkgeformtes, behandeltes StahlblechZugangsabdeckungen aus Metall ermöglichen das einfache Öffnen der Türen zu elektrischen KomponentenWasserbasierter, lufttrocknender Finish-Lack, der auf eine gereinigte und grundierte Oberfläche gesprüht wirdLeicht abhebbare Zugangstüren mit Scharnieren für die Wartung des KühlsystemsEine Zugangsöffnung mit 12,5 cm Durchmesser, Innenschweißung und abnehmbarem Isolierstopfen, montiert im rechten Seitenwandzubehör an der Flügeltür für einfachen ZugangMerkmaleChamber Operation zeigt hilfreiche Laufzeitinformationen übersichtlich anGraphing Screen bietet erweiterte Funktionen, verbesserte Programmierung und BerichterstellungDer Systemstatus zeigt wichtige Parameter des Kühlsystems anProgram Entry erleichtert das Laden, Anzeigen und Bearbeiten von ProfilenEinrichtungs-Schnellassistenten erleichtern die ProfileingabePopup-Kühldiagramme als praktische ReferenzTherm-Alarm® bietet Über- und UntertemperaturalarmschutzDer Aktivitätsprotokollbildschirm bietet einen umfassenden GeräteverlaufDer Webserver ermöglicht den Internetzugriff auf Geräte über EthernetDie benutzerfreundliche Popup-Tastatur ermöglicht eine schnelle und einfache DateneingabeBeinhaltet:- Vier USB-Anschlüsse – zwei externe und zwei interne- Ethernet- RS-232Technische Spezifikationen1–4 unabhängig programmierbare KanäleMessgenauigkeit: typisch 0,25 % der SpanneWählbare Temperaturskala in °C oder °F12,1 Zoll (30 cm) Farb-Flachbildschirm-Touchscreen-DisplayAuflösung: 0,1 °C, 0,1 % RH, 0,01 für andere lineare AnwendungenEchtzeituhr inklusiveAbtastrate: Prozessvariable, die alle 0,1 Sekunden abgetastet wirdProportionalband: Programmierbar 1,0° bis 300°Steuerungsmethode: DigitalIntervalle: UnbegrenztIntervallauflösung: 1 Sek. bis 99 Std., 59 Min. mit 1-Sekunden-Auflösung- RS-232- 10+ Jahre Datenspeicherung- Produkttemperaturkontrolle- Ereignis-RelaisplatineBetriebsmodi: Automatisch oder manuellProgrammspeicher: UnbegrenztProgrammschleifen:- Bis zu 64 Schleifen pro ProgrammSchleifen können im Programm bis zu 9.999 Mal wiederholt werden- Bis zu 64 verschachtelte Schleifen pro Stück sind zulässig
Die Beziehung zwischen der Höhe der Standardatmosphäre und der Lufttemperatur und dem LuftdruckDie hier genannte Standardatmosphäre bezieht sich auf die „ICAO-Standardatmosphäre von 1964“, die von der Internationalen Zivilluftfahrt-Organisation übernommen wurde. Unterhalb einer Höhe von 32 km entspricht sie der „US-Standardatmosphäre von 1976“. Änderungen der Lufttemperatur in der Nähe der Oberfläche (unter 32 km) sind:Boden: Die Lufttemperatur beträgt 15,0℃, der Luftdruck P=1013,25mb=0,101325MPaTemperaturänderungsrate vom Boden zur Höhe 11 km: -6,5 ℃/kmAuf der 11-km-Schnittstelle:Die Lufttemperatur beträgt -56,5 ℃ und der Luftdruck P=226,32 mbTemperaturänderungsrate in Höhenlagen von 11–20 km: 0,0℃/kmTemperaturänderungsrate in einer Höhe von 20–32 km: +1,0/kmIn der folgenden Tabelle sind die Temperatur- und Druckwerte der Standardatmosphäre in verschiedenen Höhen aufgeführt. In der Tabelle ist „gpm“ der Höhenmeter und sein negatives Vorzeichen stellt die Höhe darGpmTemperatur℃Atmosphärendruck (mb)GpmTemperatur℃Atmosphärendruck (mb)GpmTemperatur℃Atmosphärendruck (mb)-40017.61062.24800-16.2554,810000-50,0264,4-20016.31037,55000-17.5540.210200-51,3256,4015.01013.35200-18.8525,910400-52,6248,620013.7989,55400-20.1511,910600-53,9241,040012.4966,15600-21.4498,310800-55,2233,660011.1943,25800-22.7484,911000-56,5226,38009.8920,86000-24,0471,811500-56,5209.210008.5898,76200-25.3459,012000-56,5193,312007.2877,26400-26.6446,512500-56,5178,714005.9856,06600-27.9434,313000-56,5165.116004.6835,26800-29.2422,313500-56,5152,618003.3814,97000-30.5410.614000-56,5141,020002,0795,07200-31.8399,214500-56,5130.322000,7775,47400-33.1388,015000-56,5120,52400-0,6756,37600-34,4377,115500-56,5111.32600-1.9737,57800-35,7366,416000-56,5102.92800-3.2719.18000-37,0356,017000-56,587,93000-4,5701.18200-38,3345,818000-56,575,03200-5,8683,48400-39,6335,919000-56,564.13400-7.1666,28600-40,9326,220000-56,554.73600-8.4649,28800-42,2316,722000-54,540,03800-9,7632,69000-43,5307,424000-52,529.34000-11.0616,49200-44,8298,426000-50,521.54200-12.3600,59400-46,1289,628000-48,515.94400-13.6584,99600-47,4281,030000-46,511.74600-14.9569,79800-48,7272,632000-44,58.7Einheitenumrechnungsbeziehung1 mbar = 100 Pa = 0,1 kPa = 0,0001 MPa1 Fuß = 0,3048 m = 304,8 mm55000 Fuß * 0,3048 = 16764 mLab Companion konzentrierte sich seit 19 Jahren auf die Herstellung von Zuverlässigkeits-Umweltprüfgeräten und hat 18.000 Unternehmen erfolgreich dabei geholfen, die Zuverlässigkeit und Umweltleistung von Produkten und Materialien zu testen.Die Hauptprodukte sind: Hochtemperatur-Testkammer, Testkammer für hohe und niedrige Temperaturen und Luftfeuchtigkeit, begehbare Umwelttestkammer, Testkammer für schnelle Temperaturwechsel, Thermoschock-Testkammer, Prüfkammer für hohe und niedrige Temperaturen und niedrigen Druck, Vibration der umfassenden Ka7496
ESS-Umweltstress-Screening-TestkammerDas vollständig horizontale Luftversorgungssystem von rechts nach links mit großem Luftvolumen wird übernommen, so dass alle Prüflinge und Prüflinge aufgeladen und aufgeteilt werden und der Wärmeaustausch gleichmäßig und schnell erfolgt.◆ Die Auslastung des Testraums beträgt bis zu 90 %◆ Das spezielle Design des „gleichmäßigen horizontalen Luftströmungssystems“ der ESS-Geräte ist das Patent der Ringmessung.Patentnummer: 6272767◆ Ausgestattet mit Luftmengenregulierungssystem◆ Einzigartiger Turbinenzirkulator (Luftvolumen kann 3000–8000 CFM erreichen)◆ Bodenartige Struktur, bequemes Be- und Entladen der getesteten Produkte◆ Entsprechend der besonderen Struktur des getesteten Produkts wird die für den Einbau geeignete Box verwendet◆ Das Steuerungssystem und das Kühlsystem können von der Box getrennt werden, was eine einfache Planung oder Lärmreduzierung im Labor ermöglicht◆ Nehmen Sie eine Temperaturregelung mit Kaltausgleich an, um mehr Energie zu sparen◆ Die Ausrüstung verwendet Sporlan-Kälteventile der weltweit führenden Marke mit hoher Zuverlässigkeit und langer Lebensdauer◆ Das Kühlsystem des Geräts verwendet verdickte Kupferrohre◆ Alle starken elektrischen Teile bestehen aus hochtemperaturbeständigen Drähten, was eine höhere Sicherheit bietet
Zuverlässigkeitstests, BeschleunigungstestsDie Lebensdauer der meisten Halbleiterbauelemente beträgt bei normalem Gebrauch mehrere Jahre. Wir können jedoch nicht Jahre warten, um ein Gerät zu untersuchen. Wir müssen die angelegte Spannung erhöhen. Angewandte Belastungen verstärken oder beschleunigen potenzielle Fehlermechanismen, helfen bei der Identifizierung der Grundursache und helfen Laborbegleiter Maßnahmen ergreifen, um den Fehlermodus zu verhindern.In Halbleiterbauelementen sind Temperatur, Feuchtigkeit, Spannung und Strom häufige Beschleunigungsfaktoren. In den meisten Fällen ändert das beschleunigte Testen nichts an der Physik des Fehlers, verschiebt jedoch die Zeit für die Beobachtung. Der Wechsel zwischen beschleunigtem Zustand und Gebrauchszustand wird als „Derating“ bezeichnet.Hochbeschleunigte Tests sind ein wichtiger Bestandteil JEDEC-basierter Qualifikationstests. Die folgenden Tests spiegeln stark beschleunigte Bedingungen basierend auf der JEDEC-Spezifikation JESD47 wider. Wenn das Produkt diese Tests besteht, sind die Geräte für die meisten Anwendungsfälle akzeptabel.TemperaturzyklusGemäß dem JESD22-A104-Standard werden die Einheiten durch Temperaturwechsel (TC) extrem hohen und niedrigen Temperaturübergängen zwischen beiden ausgesetzt. Der Test wird durchgeführt, indem das Gerät diesen Bedingungen über eine vorgegebene Anzahl von Zyklen ausgesetzt wird.Betriebsdauer bei hohen Temperaturen (HTOL)HTOL wird verwendet, um die Zuverlässigkeit eines Geräts bei hohen Temperaturen unter Betriebsbedingungen zu bestimmen. Der Test wird in der Regel über einen längeren Zeitraum gemäß dem JESD22-A108-Standard durchgeführt.Temperatur-Feuchtigkeits-Bias/Biased Highly Accelerated Stress Test (BHAST)Gemäß dem JESD22-A110-Standard setzen THB und BHAST ein Gerät hohen Temperaturen und hoher Luftfeuchtigkeit aus, während es unter einer Vorspannung steht, mit dem Ziel, die Korrosion innerhalb des Geräts zu beschleunigen. THB und BHAST dienen demselben Zweck, aber die BHAST-Bedingungen und Testverfahren ermöglichen es dem Zuverlässigkeitsteam, Tests viel schneller als THB durchzuführen.Autoklav/Unvoreingenommener HASTAutoklav und unvoreingenommener HAST bestimmen die Zuverlässigkeit eines Geräts unter Bedingungen hoher Temperatur und hoher Luftfeuchtigkeit. Wie THB und BHAST wird es durchgeführt, um die Korrosion zu beschleunigen. Im Gegensatz zu diesen Tests werden die Einheiten jedoch nicht voreingenommen belastet.HochtemperaturlagerungHTS (auch Bake oder HTSL genannt) dient zur Bestimmung der Langzeitzuverlässigkeit eines Geräts unter hohen Temperaturen. Im Gegensatz zu HTOL befindet sich das Gerät während der Testdauer nicht im Betriebszustand.Elektrostatische Entladung (ESD)Statische Ladung ist eine unausgeglichene elektrische Ladung im Ruhezustand. Typischerweise entsteht es durch das Aneinanderreiben oder Auseinanderziehen der Isolatoroberflächen; Eine Oberfläche nimmt Elektronen auf, während die andere Oberfläche Elektronen verliert. Das Ergebnis ist ein unausgeglichener elektrischer Zustand, der als statische Aufladung bezeichnet wird.Wenn sich eine statische Ladung von einer Oberfläche zur anderen bewegt, wird sie zur elektrostatischen Entladung (ESD) und bewegt sich in Form eines Miniaturblitzes zwischen den beiden Oberflächen.Wenn sich eine statische Ladung bewegt, wird sie zu einem Strom, der Gateoxid, Metallschichten und Verbindungen beschädigen oder zerstören kann.JEDEC testet ESD auf zwei verschiedene Arten:1. Human Body Mode (HBM)Eine Spannung auf Komponentenebene, die entwickelt wurde, um die Aktion eines menschlichen Körpers zu simulieren, der angesammelte statische Ladung über ein Gerät an die Erde abgibt.2. Charged Device Model (CDM)Eine Belastung auf Komponentenebene, die Lade- und Entladeereignisse simuliert, die in Produktionsanlagen und -prozessen gemäß der JEDEC JESD22-C101-Spezifikation auftreten.
Laboröfen und LaboröfenDesign mit Musterschutz als HauptzielLaboröfen sind ein unverzichtbares Hilfsmittel für Ihren täglichen Arbeitsablauf, vom einfachen Trocknen von Glaswaren bis hin zu sehr komplexen temperaturgesteuerten Heizanwendungen. Unser Portfolio an Heiz- und Trockenöfen bietet Temperaturstabilität und Reproduzierbarkeit für alle Ihre Anwendungsanforderungen. Die Heiz- und Trockenöfen von LABCOMPANION sind vor allem auf den Schutz der Proben ausgelegt und tragen zu überragender Effizienz, Sicherheit und Benutzerfreundlichkeit bei.Verstehen Sie natürliche und mechanische KonvektionPrinzip der natürlichen Konvektion:In einem Naturkonvektionsofen strömt heiße Luft von unten nach unten, sodass die Temperatur gleichmäßig verteilt ist (siehe Abbildung oben). Kein Lüfter bläst aktiv die Luft in die Box. Der Vorteil dieser Technologie liegt in der extrem geringen Luftturbulenz, die ein schonendes Trocknen und Erhitzen ermöglicht.Prinzip der mechanischen Konvektion:In einem Ofen mit mechanischer Konvektion (Umluftantrieb) treibt ein integrierter Ventilator die Luft im Ofen aktiv an, um eine gleichmäßige Temperaturverteilung in der gesamten Kammer zu erreichen (siehe Abbildung oben). Ein großer Vorteil ist die hervorragende Temperaturgleichmäßigkeit, die reproduzierbare Ergebnisse bei Anwendungen wie der Materialprüfung sowie bei Trocknungslösungen mit sehr anspruchsvollen Temperaturanforderungen ermöglicht. Ein weiterer Vorteil besteht darin, dass die Trocknungsgeschwindigkeit viel schneller ist als bei natürlicher Konvektion. Nach dem Öffnen der Tür wird die Temperatur im mechanischen Konvektionsofen schneller wieder auf das eingestellte Temperaturniveau gebracht.
Umrechnung zwischen beschleunigter Alterung der Testkammer für die Alterung von Xenonlampen und Alterung im Freien Im Allgemeinen ist es schwierig, eine detaillierte Positionierungs- und Umrechnungsformel für die Umrechnung zwischen der beschleunigten Alterung der Testkammer für die Alterung von Xenonlampen und der Alterung im Freien zu haben. Das größte Problem ist die Variabilität und Komplexität der Außenumgebung. Zu den Variablen, die den Zusammenhang zwischen der Exposition in der Testkammer für die Alterung von Xenon-Lampen und der Exposition im Freien bestimmen, gehören:1. Geografische Breite der Alterungsstandorte im Freien (näher am Äquator bedeutet mehr UV-Strahlung).2. Höhe (höhere Höhe bedeutet mehr UV).3. Lokale geografische Besonderheiten, wie z. B. der Wind kann die Testprobe austrocknen oder die Nähe zu Wasser führt zu Kondensation.4. Zufällige Klimaänderungen von Jahr zu Jahr können zu einer 2:1-Änderung der Alterung am selben Standort führen.5. Saisonale Veränderungen (z. B. kann die Exposition im Winter 1/7 der Exposition im Sommer betragen).6. Richtung der Probe (5° nach Süden vs. vertikal nach Norden ausgerichtet)7. Probenisolierung (Außenproben mit isolierter Rückseite altern 50 % schneller als nicht isolierte Proben).8. Arbeitszyklus der Xenon-Lampen-Alterungsbox (Lichtzeit und Nasszeit).9. Die Arbeitstemperatur der Prüfkammer (je höher die Temperatur, desto schneller die Alterung).10. Testen Sie die Einzigartigkeit der Probe.11. Spektrale Intensitätsverteilung (SPD) von LaborlichtquellenObjektiv gesehen haben beschleunigte Alterung und Alterung im Freien keine Konvertierbarkeit, einer ist eine Variable, einer ist ein fester Wert, das einzige, was zu tun ist, ist, einen relativen Wert und keinen absoluten Wert zu erhalten. Das heißt natürlich nicht, dass relative Werte keine Wirkung haben; im Gegenteil, relative Werte können auch sehr effektiv sein. Sie werden beispielsweise feststellen, dass eine geringfügige Änderung des Designs die Haltbarkeit von Standardmaterialien verdoppeln kann. Oder Sie finden das gleich aussehende Material von mehreren Anbietern, von denen einige schnell altern, die meisten eine moderate Zeit zum Altern benötigen und eine kleinere Menge, die nach längerer Belichtung altert. Oder Sie stellen möglicherweise fest, dass kostengünstigere Konstruktionen die gleiche Haltbarkeit aufweisen wie Standardmaterialien, die über die tatsächliche Lebensdauer, beispielsweise 5 Jahre, eine zufriedenstellende Leistung erbringen.
Wie lang ist die Bewitterungstestkammer für Xenonlampen Entspricht einem Jahr Aufenthalt im Freien?Wie lange entspricht die Bewitterungsdauer einer Xenonlampe einem Jahr Außenbewitterung? Wie kann man die Haltbarkeit testen? Dies ist ein technisches Problem, aber auch viele Benutzer sind über das Problem besorgt. Die heutigen Ingenieure von Lab Companion werden dieses Problem erklären.Dieses Problem sieht sehr einfach aus, tatsächlich handelt es sich um ein komplexes Problem. Wir können nicht einfach eine einfache Zahl erhalten, sondern diese Zahl mit der Testzeit der Xenonlampen-Bewitterungstestkammer multiplizieren, um so die Belichtungszeit im Freien zu erhalten. Auch die Qualität unserer Xenon-Lampen-Bewitterungsprüfkammer ist nicht gut genug! Unabhängig davon, wie gut die Qualität der Xenon-Lampen-Bewitterungsprüfkammer ist und wie fortschrittlich sie ist, ist es immer noch unmöglich, nur eine Zahl zu finden, die das Problem löst. Das Wichtigste ist, dass die Außenumgebung komplex und veränderlich ist und von vielen Faktoren beeinflusst wird. Was sind die Besonderheiten?1. Der Einfluss der geografischen Breite2. Der Einfluss der Höhe3. Der Einfluss der geografischen Umgebung beim Testen, beispielsweise der Windgeschwindigkeit.4. Die Auswirkungen der Jahreszeiten, Winter und Sommer, werden unterschiedlich sein, die Sommerexposition ist siebenmal so groß wie der Schaden der Winterexposition.5. Richtung der Testprobe6. Ist die Probe isoliert oder nicht isoliert? Auf Isolatoren platzierte Proben altern im Allgemeinen viel schneller als solche, die nicht auf Isolatoren platziert sind.7. Testzyklus der Xenonlampen-Bewitterungstestkammer8. Betriebstemperatur der Xenonlampen-Bewitterungstestkammer: Je höher die Temperatur, desto schneller die Alterung9. Prüfung spezieller Materialien10. Spektrumverteilung im Labor
Umweltsimulationstestschema für Wasserstoff-Brennstoffzellen
Gegenwärtig hat das Wirtschaftsentwicklungsmodell, das auf dem Verbrauch nicht erneuerbarer Energien auf der Basis von Kohle, Öl und Erdgas basiert, zu einer immer stärkeren Umweltverschmutzung und einem Treibhauseffekt geführt. Um eine nachhaltige Entwicklung des Menschen zu erreichen, wurde eine harmonische Beziehung zwischen Mensch und Natur hergestellt. Die Entwicklung nachhaltiger grüner Energie ist weltweit zu einem Thema großer Besorgnis geworden.
Als saubere Energie, die Abfallenergie speichern und die Umwandlung von traditioneller fossiler Energie in grüne Energie fördern kann, hat Wasserstoffenergie eine Energiedichte (140 MJ/kg), die dreimal so hoch ist wie die von Öl und 4,5 mal so hoch wie die von Kohle, und gilt als eine subversive technologische Richtung der zukünftigen Energiewende. Die Wasserstoff-Brennstoffzelle ist der Schlüsselträger für die Umwandlung von Wasserstoffenergie in elektrische Energie. Nachdem das Ziel der CO2-Neutralität und des Kohlenstoffpeaks „Double Carbon“ vorgeschlagen wurde, hat es neue Aufmerksamkeit in der Grundlagenforschung und industriellen Anwendung erlangt.
Die Umwelttestkammer für Wasserstoff-Brennstoffzellen von Lab Companion erfüllt: Brennstoffzellenstapel und -modul: 1 W ~ 8 kW, Brennstoffzellenmotor: 30 kW ~ 150 kW Kaltstarttest bei niedriger Temperatur: -40 ~ 0 °C Lagerungstest bei niedriger Temperatur: -40 ~ 0 °C Hoch Temperaturlagertest: 0~100℃.
Einführung einer Umwelttestkammer für Wasserstoffbrennstoffzellen
Das Produkt ist funktional modular aufgebaut, explosionsgeschützt und antistatisch und erfüllt die relevanten Prüfnormen. Das Produkt zeichnet sich durch hohe Zuverlässigkeit und umfassende Sicherheitswarnung aus und eignet sich für den Test des Reaktor- und Brennstoffzellenmotorsystems. Anwendbare Leistung bis zu 150 kW Brennstoffzellensystem, Niedertemperaturtest (Lagerung, Start, Leistung), Hochtemperaturtest (Lagerung, Start, Leistung), Nasshitzetest (hohe Temperatur und Luftfeuchtigkeit).
Sicherheitsteile:
1. Explosionsgeschützte Kamera: Zeichnen Sie die gesamte Testsituation in Echtzeit in der Box auf und lassen Sie sich einfach optimieren oder rechtzeitig anpassen.
2. UV-Flammenmelder: Hochgeschwindigkeits-, genauer und intelligenter Brandmelder, genaue Identifizierung von Flammensignalen.
3. Notabluftauslass: Absaugen des giftigen brennbaren Gases in der Box, um die Sicherheit des Tests zu gewährleisten.
4. Gasdetektions- und Alarmsystem: Intelligente und schnelle Identifizierung brennbarer Gase, automatische Generierung von Alarmsignalen.
5. Doppelte parallele einpolige Schraubenmechanismus-Kälteeinheit: Sie weist die Eigenschaften einer Klassifizierungsfunktion, großer Leistung, geringer Stellfläche usw. auf.
6. Gasvorkühlsystem: Kontrollieren Sie schnell die Gastemperaturanforderungen, um Kaltstartbedingungen sicherzustellen.
7. Stapeltestgestell: Stapeltestgestell aus Edelstahl, ausgestattet mit einem Wasserkühlungs-Hilfskühlsystem.
Testprojekt für Brennstoffzellensysteme
Testprojekt für Brennstoffzellensysteme
Luftdichtheitstest für Brennstoffzellenmotoren
Qualität des Stromerzeugungssystems
Das Volumen des Batteriestapels
Erkennung des Isolationswiderstands
Startcharakteristiktest
Nennleistungsstarttest
Steady-State-Kennlinientest
Prüfung der Nennleistungskennlinie
Prüfung der Spitzenleistungscharakteristik
Prüfung der dynamischen Reaktionseigenschaften
Anpassungsfähigkeitstest bei hohen Temperaturen
Leistungstest des Brennstoffzellenmotorsystems
Vibrationsfestigkeitstest
Anpassungsfähigkeitstest bei niedrigen Temperaturen
Starttest (niedrige Temperatur)
Leistungstest der Stromerzeugung
Abschalttest
Lagerungstest bei niedriger Temperatur
Start- und Betriebsverfahren bei niedrigen Temperaturen
/
/
Prüfobjekte für Reaktoren und Module
Prüfobjekte für Reaktoren und Module
Routineinspektion
Gaslecktest
Normaler Betriebstest
Arbeitsdruckprüfung durchführen lassen
Druckprüfung des Kühlsystems
Gaskanaltest
Prüfungen der Schlag- und Vibrationsfestigkeit
Elektrischer Überlasttest
Spannungsfestigkeitstest
Druckdifferenztest
Prüfung der Konzentration brennbarer Gase
Überdrucktest
Wasserstofflecktest
Test des Gefrier-/Tauzyklus
Hochtemperatur-Lagertest
Luftdichtheitsprüfung
Kraftstoffmangeltest
Sauerstoff-/Oxidationsmittel-Mangeltest
Kurzschlusstest
Mangelnde Kühlung/beeinträchtigter Kühltest
Test des Penetrationsüberwachungssystems
Bodentest
Starttest
Leistungstest der Stromerzeugung
Abschalttest
Lagerungstest bei niedriger Temperatur
Starttest bei niedriger Temperatur
Für das Produkt geltende Normen:
GB/T 10592-2008 Technische Bedingungen der Testkammer für hohe und niedrige Temperaturen
Technische Bedingungen der Feuchtigkeitsprüfkammer GB/T 10586-2006
GB/T31467.3-2015
GB/T31485-2015
GB/T2423.1-2208
GB/T2423.2-2008
GB/T2423.3-2006
GB/T2523.4-2008
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.