Die Rolle der Hoch- und Niedertemperatur-Testkammer für die Prüfung elektronischer KomponentenPrüfkammer für hohe und niedrige Temperaturen wird für elektronische und elektrische Komponenten, Automatisierungsteile, Kommunikationskomponenten, Automobilteile, Metall, chemische Materialien, Kunststoffe und andere Industrien, nationale Verteidigungsindustrie, Luft- und Raumfahrt, Militär, BGA, PCB-Substratschlüssel, elektronische Chip-ICs, Halbleiter-Keramik-Magnet- und Polymerindustrie verwendet materielle körperliche Veränderungen. Das Testen der Leistung seines Materials, hohen und niedrigen Temperaturen sowie den chemischen Veränderungen oder physikalischen Schäden des Produkts bei thermischer Ausdehnung und Kontraktion standzuhalten, kann die Qualität des Produkts bestätigen, von Präzisions-ICs bis hin zu schweren Maschinenkomponenten, wird eine wesentliche Testkammer für sein Produkttests in verschiedenen Bereichen.Was kann die Hoch- und Niedertemperaturprüfkammer für elektronische Komponenten leisten? Elektronische Komponenten sind die Grundlage der gesamten Maschine und können aufgrund ihrer inhärenten Mängel oder einer unsachgemäßen Steuerung des Herstellungsprozesses zu zeit- oder stressbedingten Ausfällen während des Gebrauchs führen. Um die Zuverlässigkeit der gesamten Komponentencharge zu gewährleisten und die Anforderungen des Gesamtsystems zu erfüllen, müssen Komponenten ausgeschlossen werden, die unter Betriebsbedingungen anfängliche Fehler aufweisen können.1. Lagerung bei hohen TemperaturenDer Ausfall elektronischer Komponenten wird meist durch verschiedene physikalische und chemische Veränderungen im Körper und an der Oberfläche verursacht, die eng mit der Temperatur zusammenhängen. Nach einem Temperaturanstieg wird die Geschwindigkeit der chemischen Reaktion stark beschleunigt, was den Ausfallprozess beschleunigt. Die defekten Komponenten können rechtzeitig aufgedeckt und beseitigt werden.Hochtemperatur-Screening wird in Halbleiterbauelementen häufig eingesetzt, wodurch Fehlermechanismen wie Oberflächenverunreinigung, schlechte Bindung und Oxidschichtdefekte wirksam beseitigt werden können. Im Allgemeinen 24 bis 168 Stunden lang bei der höchsten Sperrschichttemperatur gelagert. Das Hochtemperaturscreening ist einfach, kostengünstig und kann an vielen Teilen durchgeführt werden. Nach der Hochtemperaturlagerung kann die Parameterleistung von Komponenten stabilisiert und die Parameterdrift im Einsatz reduziert werden.2. LeistungstestBeim Screening können unter der kombinierten Wirkung thermoelektrischer Spannung viele potenzielle Defekte am Körper und an der Oberfläche des Bauteils gut aufgedeckt werden, was ein wichtiges Projekt des Zuverlässigkeitsscreenings darstellt. Verschiedene elektronische Komponenten werden normalerweise für einige Stunden bis 168 Stunden unter Nennleistungsbedingungen verfeinert. Einige Produkte, wie zum Beispiel integrierte Schaltkreise, können die Bedingungen nicht beliebig ändern, sondern können den Hochtemperatur-Arbeitsmodus verwenden, um die Arbeitsübergangstemperatur zu erhöhen und einen hohen Spannungszustand zu erreichen. Die Energieraffinierung erfordert spezielle Testgeräte, Testkammern für hohe und niedrige Temperaturen, hohe Kosten und die Screening-Zeit sollte nicht zu lang sein. Zivile Produkte dauern in der Regel ein paar Stunden, militärische Hochzuverlässigkeitsprodukte können 100.168 Stunden betragen und Komponenten in Luftfahrtqualität können 240 Stunden oder länger dauern.3. TemperaturzyklusElektronische Produkte unterliegen während des Gebrauchs unterschiedlichen Umgebungstemperaturbedingungen. Unter der Belastung durch thermische Ausdehnung und Kontraktion können Komponenten mit schlechter thermischer Anpassungsleistung leicht ausfallen. Das Temperaturzyklus-Screening nutzt die thermische Ausdehnungs- und Kontraktionsspannung zwischen extrem hohen und extrem niedrigen Temperaturen, um Produkte mit thermischen Leistungsmängeln effektiv zu eliminieren. Die üblicherweise verwendeten Komponenten-Screening-Bedingungen sind -55 bis 125 °C, 5 bis 10 Zyklen.Die Energieraffinierung erfordert spezielle Testgeräte, hohe Kosten und die Screening-Zeit sollte nicht zu lang sein. Zivile Produkte dauern in der Regel ein paar Stunden, militärische Hochzuverlässigkeitsprodukte können 100.168 Stunden und luftfahrttaugliche Komponenten 240 Stunden oder länger haben.4. Die Notwendigkeit der Überprüfung von KomponentenDie inhärente Zuverlässigkeit elektronischer Komponenten hängt vom Zuverlässigkeitsdesign des Produkts ab. Im Herstellungsprozess des Produkts kann das Endprodukt aufgrund menschlicher Faktoren oder Schwankungen bei Rohstoffen, Prozessbedingungen und Anlagenbedingungen nicht alle die erwartete inhärente Zuverlässigkeit erreichen. In jeder Charge fertiger Produkte gibt es immer einige Produkte mit potenziellen Mängeln und Schwächen, die durch einen frühen Ausfall unter bestimmten Belastungsbedingungen gekennzeichnet sind. Die durchschnittliche Lebensdauer früher ausgefallener Teile ist viel kürzer als bei normalen Produkten.Ob elektronische Geräte zuverlässig funktionieren, hängt davon ab, ob elektronische Komponenten zuverlässig funktionieren. Wenn die frühzeitig ausgefallenen Teile zusammen mit der gesamten Maschinenausrüstung installiert werden, erhöht sich die Ausfallrate der gesamten Maschinenausrüstung erheblich, und ihre Zuverlässigkeit wird nicht den Anforderungen entsprechen, und es wird auch einen hohen Preis für die Reparatur zahlen .Unabhängig davon, ob es sich um ein militärisches oder ein ziviles Produkt handelt, ist die Überprüfung ein wichtiges Mittel zur Gewährleistung der Zuverlässigkeit. Hoch- und Niedertemperaturprüfkammern sind die beste Wahl für die Prüfung der Umweltzuverlässigkeit elektronischer Komponenten.
Wartungsmethode der Hoch- und Niedertemperatur-TestkammerEs gibt drei gängige Arten von Prüfkammer für hohe und niedrige Temperaturen Controller: Softwarefehler, Systemfehler und Hardwarefehler.1, Softwarefehler: Softwarefehler beziehen sich hauptsächlich auf den Controller-Fehler der Hoch- und Niedertemperatur-Testkammer, einschließlich der internen Parameter, der IS-Steuerung des Steuerpunkts und des Ausgangssignals des Ein- und Ausschaltens des Magnetventils.2, Systemfehler: Ein Systemausfall bezieht sich auf die anfänglichen Konstruktionsprobleme des Kühlsystems, einschließlich des Austretens von Kältemittel, das dadurch verursacht wird, dass die Prüfkammer bei hohen und niedrigen Temperaturen nicht abkühlt, und Kältemittellecks sind häufig auf Transport und Betriebsschwankungen der Prüfkammer bei hohen und niedrigen Temperaturen oder auf Kühlung zurückzuführen Der Kupferrohrschweißprozess ist nicht in Ordnung und es gibt andere Gründe dafür.3, Hardwarefehler: Ein Hardwarefehler kann dazu führen, dass der Kompressor, das Magnetventil und andere Kühlkomponenten nicht kühlen.Dann kann der Benutzer zuhören und anfassen, um grob zu verstehen, was die Hardware-Schäden in der Testkammer bei hohen und niedrigen Temperaturen sind. Wenn es sich um einen Kompressorausfall handelt, ist das Kompressorgeräusch ungewöhnlich oder funktioniert nicht, startet nicht oder die Temperatur des Kompressors selbst ist viel höher als übliche Temperatur, und der Ausfall des Magnetventils und anderer Kühlkomponenten ist für den Benutzer nicht allzu gut, um ihn zu meistern.Darüber hinaus kann die Beschädigung des Controllers und die Beschädigung der elektronischen Teile des Kühlsystems zur Steuerung auch das Phänomen der Nichtkühlung und Nichtkühlung der Hoch- und Niedertemperatur-Testkammer verursachen.Wissenschaftliches Prinzip des Heizens und Kühlens von Hoch- und Niedertemperatur-Testkammern:Die Testkammer für hohe und niedrige Temperaturen hat die Funktionen Heizen, Kühlen, Befeuchten und Entfeuchten und kann die hohe Temperaturbeständigkeit, niedrige Temperaturbeständigkeit und Feuchtigkeitsbeständigkeit des Produkts erkennen. Wie wird die Temperatur in der Hoch- und Niedertemperatur-Prüfkammer gesteuert?Das Heizgerät ist das zentrale Glied zur Steuerung, ob die Hoch- und Niedertemperatur-Prüfkammer aufgeheizt wird. Der Regler gibt Spannung an das Relais aus, wenn er den Heizbefehl erhält. In der Testkammer für hohe und niedrige Temperaturen werden dem Halbleiterrelais etwa 3–12 Volt Gleichstrom zugeführt. Das AC-Ende der Hoch- und Niedertemperatur-Prüfkammer entspricht einer Drahtverbindung, und gleichzeitig wird auch das Schütz gezogen. Heizen Sie die Testkammer mit konstanter Temperatur und Luftfeuchtigkeit auf.Die Kühlung ist ein wichtiger Teil der Testkammer für hohe und niedrige Temperaturen, der sich direkt auf die Bestimmung der hohen und niedrigen Temperatur und der Leistung auswirkt. Dazu gehören Kompressor, Kondensator, Drosselvorrichtung und Verdampfer. Die vier Hauptkomponenten sind der Kompressor und das Herzstück des Kühlsystems. Es inhaliert Gas mit niedriger Temperatur und niedrigem Druck in Gas mit hoher Temperatur und hohem Druck, durch Kondensation in eine Flüssigkeit, um Wärme freizusetzen, und durch den Ventilator, um Wärme abzuführen. Daher ist die Testkammer der Grund für heiße Luft und wird dann niedrig Druckflüssigkeit Durch Drosselung wird dann Gas mit niedriger Temperatur und niedrigem Druck durch den Verdampfer zurück zum Kompressor geleitet, wobei das Kältemittel im Verdampfer die Wärme der Hoch- und Niedertemperaturkammer aufnimmt, um den Vergasungsprozess abzuschließen und Wärme zu absorbieren, um den Zweck zu erreichen Kühlung, um den Kühlprozess der Testkammer bei hohen und niedrigen Temperaturen abzuschließen.Testverfahren für Hoch- und Niedertemperaturkammertemperatur und Abkühlrate:Im einstellbaren Temperaturbereich der Prüfkammer wurde als niedrigste Kühltemperatur die niedrigste Solltemperatur und als höchste Heiztemperatur die höchste Solltemperatur gewählt.Öffnen Sie die Kältequelle, so dass die Prüfkammer während des Erhitzens von Raumtemperatur auf die niedrigste Kühltemperatur, stabil für mindestens 3 Stunden, auf die höchste Heiztemperatur, stabil für mindestens 3 Stunden, und dann auf die niedrigste Kühltemperatur ansteigt und Abkühlung, einmal pro Minute bis zum Ende des Testvorgangs aufzeichnen.Das Prinzip der Hoch- und Niedertemperatur-Prüfkammerheizung und -kühlung besteht darin, dass die Verwirklichung ihrer Funktion durch die Einstellung des Steuerungssystems vervollständigt wird, wobei das Prinzip der Heiz- und Kühlkammer bei der Verwendung von Hoch- und Niedertemperatur-Prüfkammern verstanden werden muss praktischer.
Definition und Verwendung der Temperaturwechsel-TestkammerTemperaturwechsel-Testkammer ist eine Art Laborgerät, das in verschiedenen Branchen weit verbreitet ist. Seine Hauptfunktion besteht darin, das Produkt innerhalb eines bestimmten Temperaturbereichs zyklisch zu betreiben, um den Betrieb des Produkts in unterschiedlichen Temperaturumgebungen zu simulieren. Die Ausrüstung ist ein wichtiges Werkzeug zur Durchführung von Produktzuverlässigkeitstests, Qualitätskontrolle und Produktleistungsbewertung.Die Temperaturwechselprüfkammer ist weit verbreitet und kann für Tests in verschiedenen Bereichen eingesetzt werden, beispielsweise in der Luft- und Raumfahrt, im Automobilbau, in der Elektronik, im Stromsektor, in der Medizintechnik und in anderen Bereichen. Im Luft- und Raumfahrtsektor werden Temperaturwechselprüfkammern eingesetzt, um die Leistung von Flugzeugkomponenten bei extremen Temperaturen zu testen und so deren Zuverlässigkeit in extremen Umgebungen sicherzustellen. Im Automobilbereich wird die Temperaturzyklus-Testkammer verwendet, um die Leistung von Automobilkomponenten unter verschiedenen Temperatur- und Feuchtigkeitsbedingungen zu testen, um sicherzustellen, dass das Auto in verschiedenen Umgebungen normal funktionieren kann. Im Bereich Elektronik und Energie werden Temperaturwechselprüfkammern verwendet, um die Leistung und Zuverlässigkeit elektronischer Geräte unter verschiedenen Temperaturbedingungen zu testen und sicherzustellen, dass die Geräte über einen langen Zeitraum stabil arbeiten können. Im medizinischen Bereich werden Temperaturwechselprüfkammern verwendet, um die Leistung und Zuverlässigkeit medizinischer Geräte unter verschiedenen Temperatur- und Feuchtigkeitsbedingungen zu testen und den normalen Betrieb der Geräte sicherzustellen.Das Funktionsprinzip der Temperaturwechseltestkammer besteht darin, den Wechseltest durch Kontrolle der Temperatur und Luftfeuchtigkeit in der Kammer durchzuführen. Das Gerät verfügt über verschiedene Temperaturregelungsmodi, wie z. B. konstante Temperaturregelung, programmierte Temperaturregelung, programmierte Temperaturregelung usw., die je nach Bedarf ausgewählt werden können. Während des Testvorgangs wird das Produkt in der Temperaturwechsel-Testkammer zum Testen in verschiedene Temperaturumgebungen gebracht, um die Verwendung des Produkts in verschiedenen Umgebungen zu simulieren. Nach Abschluss des Tests können Benutzer das Produkt entsprechend den Testergebnissen verbessern und aufrüsten, um die Zuverlässigkeit und Leistung des Produkts zu verbessern.Kurz gesagt handelt es sich bei der Temperaturwechsel-Testkammer um ein Laborgerät, das in verschiedenen Branchen weit verbreitet ist. Ihre Hauptfunktion besteht darin, das Produkt innerhalb eines bestimmten Temperaturbereichs zyklisch zu betreiben, um den Betrieb des Produkts in unterschiedlichen Temperaturumgebungen zu simulieren. Die Ausrüstung kann für Tests in verschiedenen Bereichen wie Luft- und Raumfahrt, Automobil, Elektronik, Energie, Medizin und anderen Bereichen eingesetzt werden und ist ein wichtiges Werkzeug für Produktzuverlässigkeitstests, Qualitätskontrolle und Produktleistungsbewertung.
ESS Stress-Screening-Maschine für schnelle TemperaturänderungenUmweltstress-Screening (ESS)Unter Belastungsscreening versteht man den Einsatz von Beschleunigungstechniken und Umgebungsbelastungen unterhalb der Konstruktionsfestigkeitsgrenze, wie z. B. Einbrennen, Temperaturwechsel, zufällige Vibration, Leistungszyklus ... Durch die Beschleunigung der Belastung treten potenzielle Mängel im Produkt auf [potenzielles Teilematerial]. Defekte, Konstruktionsfehler, Prozessfehler, Prozessfehler] und die Beseitigung elektronischer oder mechanischer Restspannungen sowie die Beseitigung von Streukondensatoren zwischen mehrschichtigen Leiterplatten, das frühe Todesstadium des Produkts in der Badkurve wird vorab entfernt und repariert , damit das Produkt durch mäßiges Screening gerettet werden kann Die normale Periode und die Abnahmeperiode der Badewannenkurve, um das Produkt während des Gebrauchsprozesses zu vermeiden, führen bei der Prüfung auf Umweltbelastungen manchmal zu Fehlern, was zu unnötigen Verlusten führt. Obwohl der Einsatz des ESS-Stressscreenings die Kosten und den Zeitaufwand erhöht, um die Produktausbeute zu verbessern und die Anzahl der Reparaturen zu verringern, gibt es einen erheblichen Effekt, aber die Gesamtkosten werden reduziert. Darüber hinaus wird auch das Vertrauen der Kunden gestärkt, im Allgemeinen sind die Stress-Screening-Methoden für elektronische Teile Vorbrennen, Temperaturzyklus, hohe Temperatur, niedrige Temperatur, PCB-Leiterplatten-Stress-Screening-Methode ist Temperaturzyklus, für die elektronischen Kosten der Beim Stressscreening handelt es sich um: Leistungsvorverbrennung, Temperaturwechsel, zufällige Vibration. Zusätzlich zum Stressscreen selbst handelt es sich um eine Prozessstufe und nicht um einen Test. Das Screening ist 100 % des Produktverfahrens.Produktmerkmale der Stress-Screening-Maschine mit schnellem Temperaturwechsel:1. Es können unterschiedliche Stress-Screening-Temperaturschwankungen von 5 °C/min, 10 °C/min und 15 °C/min eingestellt werden.2, Es kann schnelle Temperaturänderungen (Stress-Screening), Kondensationstests, hohe Temperaturen und Luftfeuchtigkeit, Temperatur- und Feuchtigkeitszyklen und andere Tests durchführen.3, Es erfüllt die Anforderungen des Stress-Screening-Tests für elektronische Geräte.4, Es kann zwischen zwei Testmethoden mit gleicher Temperatur und Durchschnittstemperatur umgeschaltet werden.Spezifikationsanforderungen der Stress-Screening-Maschine mit schnellem Temperaturwechsel:1. Es können verschiedene Stress-Screening-Testbedingungen (schnelle Temperaturschwankungen) von 5 °C/min, 10 °C/min und 15 °C/min eingestellt werden.2, Es erfüllt die Belastungsprüfung von Produkten für elektronische Geräte, bleifreies Verfahren, MIL-STD-2164, MIL-344A-4-16, MIL-2164A-19, NABMAT-9492, GJB-1032-90, GJB/Z34- 5.1.6, IPC-9701 und andere Testanforderungen.3, Es kann den Testmodus für gleiche Temperatur und Durchschnittstemperatur durchführen.4. Es wird Aluminiumblech verwendet, um die Tragfähigkeit der Maschine zu überprüfen (nichtplastische Last).
Vakuum-Hochtemperatur-TestkammerMerkmale der Vakuum-Hochtemperatur-Testkammer: spezielle Hochtemperaturausrüstung zur Entschäumung und Antioxidation. Und es erfüllt die Standards: GB/T2423.1 (IEC60068-2-1), GB/T2423.2 (IEC60068-2-2), ISO16750; JESD22, GB/T 14710, GB/T 13543.Zunächst Produktübersicht der Vakuum-Hochtemperatur-Testkammer:Neues und einfaches Design;Das Programm zur automatischen Steuerung von Druck und Temperatur ist einfach zu bedienen und funktionell fortschrittlich. Beobachtungsfenster zur einfachen Beobachtung des Testmaterialstatus (optional);Doppelte Struktur in der Kammer: Das Innere des Vakuumbehälters verfügt über eine doppelte Struktur aus einem Innenschlitz und einer Heizung außerhalb der Innenkammer, um den Wärmeverlust zu reduzieren, die Temperaturgleichmäßigkeit zu verbessern, die Temperaturanstiegszeit erheblich zu verkürzen und den Betrieb zu verbessern Rate der Ausrüstung;Weit verbreitet: kann zum Entschäumen, Entgasen, Härten, Trocknen usw. verwendet werden;Mischen von Harzflüssigkeit und Silikonflüssigkeit bei der Entschäumungsbehandlung im LED-Produktionsprozess, verschiedene Entgasungsbehandlungen beim Formen von Harzen, IC-Injektion von Epoxidharz-Härtungsbehandlungen, Trocknen elektronischer Teile nach der Wasserreinigung, Vakuum-Hochtemperatur-Testkammern können in all diesen Prozessen verwendet werden;Zweitens verschiedene Modelle der Vakuum-Hochtemperatur-Testkammer: Modellnummer TemperaturbereichInternes VolumenTypInterne Größe(B*H*Tmm)Äußere Größe(B*H*Tmm)VAC-101P+40~+200℃91LAtmosphärendruckbereich: 933–1[*102Pa](abs)450×450×450902×1.392×780VAC-201P+40~+200℃216LAtmosphärendruckbereich: 933–1[*102Pa](abs)600×600×6001.052×1.532×930VAC-301P+40~+200℃512LAtmosphärendruckbereich: 933–1[*102Pa](abs)800×800×8001.252×1.772×1.130ModellnummerTemperatur-/DruckbereichInterne Größe(B*H*Tmm)LCV-234(RT+20)°C~+200°C / 0-101kPa(Manometer)450×450×450LCV-244550×550×550
Neue Testlösung für EnergieumgebungenDas Problem der Zuverlässigkeit neuer Energien ist immer noch schwierig, und das integrierte Erkennungssystem für elektrische Belastungen und Umweltbelastungen wird die besten Mittel für Forschung, Entwicklung und Fertigung darstellen.IndustrieTestobjektVerwendenTechnologieLösungNeue EnergieBatterie (Sekundärbatterie)ÜberprüfenLade- und EntladetestPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit). Testkammer mit schnellem Temperatur- (und Feuchtigkeits-)Wechsel AuswertenCharakteristischer Test Testkammer mit schnellem Temperatur- (und Feuchtigkeits-)Wechsel Brennstoffzelle/TemperaturbeständigkeitKleine Prüfkammer für extrem niedrige TemperaturenPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit). Testkammer mit schnellem Temperatur- (und Feuchtigkeits-)Wechsel
Testlösung für InformationskommunikationsumgebungenDie statistische Analyse zeigt, dass der Ausfall elektronischer Komponenten 50 % des Ausfalls elektronischer Gesamtmaschinen ausmacht und die Technologie zur Zuverlässigkeitserkennung noch vor vielen Herausforderungen steht.IndustrieTestobjektVerwendenTechnologieLösungIT-KommunikationÜbertragungsschaltgeräteÜberprüfenPlatzierungstest bei hoher TemperaturPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).AlterungstestPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).AuswertenThermozyklischer TestPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).Tellcordia-TestPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).Thermozyklischer Test Testkammer mit schnellem Temperatur- (und Feuchtigkeits-)Wechsel Mobiles KommunikationsterminalÜberprüfenBetriebstest abgeschlossenPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).Betriebstest abgeschlossen Testkammer mit schnellem Temperatur- (und Feuchtigkeits-)Wechsel AuswertenTemperatur- und FeuchtigkeitstestPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).ComputerÜberprüfenScreening der fertigen Produkte Testkammer mit schnellem Temperatur- (und Feuchtigkeits-)Wechsel Platzierungstest bei hoher TemperaturPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).AlterungstestPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).Externes ComputerspeichergerätÜberprüfenKomponentenscreeningPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).Komponentenscreening Testkammer mit schnellem Temperatur- (und Feuchtigkeits-)Wechsel AuswertenStellen Sie sicher, dass der Betrieb innerhalb des Temperatur- und Feuchtigkeitsbereichs getestet wirdPrüfkammer für hohe und niedrige Temperaturen (und Luftfeuchtigkeit).Stellen Sie sicher, dass der Betrieb innerhalb des Temperatur- und Feuchtigkeitsbereichs getestet wird Testkammer mit schnellem Temperatur- (und Feuchtigkeits-)Wechsel
Thermozyklischer Test (TC) und Thermoschocktest (TS)Thermozyklischer Test (TC):Im Lebenszyklus des Produkts kann es verschiedenen Umgebungsbedingungen ausgesetzt sein, die dazu führen, dass das Produkt an gefährdeten Stellen erscheint, was zu Produktschäden oder -ausfällen führt und dann die Zuverlässigkeit des Produkts beeinträchtigt. Es werden eine Reihe von Hoch- und Tieftemperatur-Wechseltests zur Temperaturänderung mit einer Temperaturschwankungsrate von 5 bis 15 Grad pro Minute durchgeführt, was keine echte Simulation der tatsächlichen Situation darstellt. Sein Zweck besteht darin, Spannungen auf das Teststück auszuüben und den Alterungsfaktor des Teststücks zu beschleunigen, so dass das Teststück unter Umwelteinflüssen Schäden an der Systemausrüstung und den Komponenten verursachen kann, um festzustellen, ob das Teststück korrekt konstruiert ist oder hergestellt. Häufige sind:Elektrische Funktion des ProduktsDas Schmiermittel verschlechtert sich und verliert seine SchmierfähigkeitVerlust der mechanischen Festigkeit, was zu Rissen und Rissen führtDie Verschlechterung des Materials führt zu chemischen Einwirkungen Anwendungsbereich:Simulationstest der Modul-/SystemproduktumgebungModul-/SystemproduktkonflikttestPCB/PCBA/Lötstellen-beschleunigter Stresstest (ALT/AST)... Thermoschocktest (TS):Im Lebenszyklus des Produkts kann es verschiedenen Umgebungsbedingungen ausgesetzt sein, die dazu führen, dass das Produkt an gefährdeten Stellen erscheint, was zu Produktschäden oder -ausfällen führt und dann die Zuverlässigkeit des Produkts beeinträchtigt. Schocktests bei hohen und niedrigen Temperaturen unter extrem rauen Bedingungen bei schnellen Temperaturänderungen mit einer Temperaturschwankung von 40 Grad pro Minute werden nicht wirklich simuliert. Sein Zweck besteht darin, starke Belastungen auf das Teststück auszuüben, um den Alterungsfaktor des Teststücks zu beschleunigen, so dass das Teststück unter Umwelteinflüssen potenzielle Schäden an der Systemausrüstung und den Komponenten verursachen kann, um festzustellen, ob das Teststück korrekt ist entworfen oder hergestellt. Häufige sind:Elektrische Funktion des ProduktsDie Produktstruktur wird beschädigt oder die Festigkeit verringertZinnrisse an BauteilenDie Verschlechterung des Materials führt zu chemischen EinwirkungenBeschädigung der Dichtung Maschinenspezifikationen:Temperaturbereich: -60 °C bis +150 °CErholungszeit: < 5 MinutenInnenmaße: 370*350*330mm (T×B×H) Anwendungsbereich:Beschleunigungstest der PCB-ZuverlässigkeitBeschleunigter Lebensdauertest des elektrischen FahrzeugmodulsBeschleunigter Test von LED-Teilen... Auswirkungen von Temperaturänderungen auf Produkte:Die Überzugsschicht der Komponenten fällt ab, die Vergussmaterialien und Dichtungsmassen reißen, sogar die Dichtungsschale reißt und die Füllmaterialien treten aus, was zu einer Verschlechterung der elektrischen Leistung der Komponenten führt.Bei Produkten, die aus unterschiedlichen Materialien bestehen, wird das Produkt bei Temperaturänderungen nicht gleichmäßig erhitzt, was zu Produktverformungen, Rissen in den Dichtungsprodukten sowie zu Glas- oder Glaswaren- und Optikschäden führt.Der große Temperaturunterschied führt dazu, dass die Oberfläche des Produkts bei niedrigen Temperaturen kondensiert oder gefriert, bei hohen Temperaturen verdunstet oder schmilzt, und das Ergebnis einer solchen wiederholten Einwirkung führt zu einer Korrosion des Produkts und beschleunigt diese. Umweltauswirkungen von Temperaturänderungen:Zerbrochenes Glas und optische Geräte.Der bewegliche Teil sitzt fest oder ist locker.Struktur schafft Trennung.Elektrische Änderungen.Elektrischer oder mechanischer Fehler aufgrund schneller Kondensation oder Gefrieren.Bruch in körniger oder streifenförmiger Form.Unterschiedliche Schrumpfungs- oder Ausdehnungseigenschaften verschiedener Materialien.Das Bauteil ist deformiert oder gebrochen.Risse in Oberflächenbeschichtungen.Luftleck im Sicherheitsbehälter.
Lab Companion-Schnelltemperaturwechsel-TestkammerEinführung von Lab CompanionMit über 20 Jahren Erfahrung, Laborbegleiter ist ein erstklassiger Hersteller von Klimakammern und ein versierter Lieferant schlüsselfertiger Testsysteme und -geräte. Alle unsere Kammern bauen auf dem Ruf von Lab Companion für lange Lebensdauer und außergewöhnliche Zuverlässigkeit auf. Lab Companion hat im Hinblick auf Design, Herstellung und Service ein Qualitätsmanagementsystem eingerichtet, das der internationalen Qualitätssystemnorm ISO 9001:2008 entspricht. Das Gerätekalibrierungsprogramm von Lab Companion ist von A2LA nach dem internationalen Standard ISO 17025 und dem amerikanischen Nationalstandard ANSI/NCSL-Z-540-1 akkreditiert. A2LA ist Vollmitglied und Unterzeichner der International Laboratory Accreditation Cooperation (ILAC), der Asia Pacific Laboratory Accreditation (APLAC) und der European Cooperation for Accreditation (EA). Die Umwelttestkammern der SE-Serie von Lab Companion bieten ein deutlich verbessertes Luftstromsystem, das bessere Gradienten und verbesserte Änderungsraten der Produkttemperatur bietet. Diese Kammern nutzen den Flaggschiff-8800-Programmierer/Controller von Thermotron mit einem hochauflösenden 12,1-Zoll-Flachbildschirm mit Touchscreen-Benutzeroberfläche, erweiterten Funktionen zur grafischen Darstellung, Datenprotokollierung, Bearbeitung, Zugriff auf die Bildschirmhilfe und langfristiger Datenspeicherung auf der Festplatte.Wir bieten nicht nur Produkte von höchster Qualität, sondern bieten auch fortlaufenden Support, der dafür sorgt, dass Sie lange nach dem ersten Verkauf einsatzbereit bleiben. Wir bieten einen direkten Werksservice vor Ort mit einem umfangreichen Lagerbestand der Teile, die Sie möglicherweise benötigen. LeistungTemperaturbereich: -70°C bis +180°CLeistung: Bei einer Aluminiumlast von 23 kg (IEC60068-3-5) beträgt die Anstiegsrate von +85 °C auf -40 °C 15 °C/Minute; Die Abkühlgeschwindigkeit von -40°C bis +85°C beträgt ebenfalls 15℃/min.Temperaturregelung: ± 1 °C Trockenkugeltemperaturen vom Kontrollpunkt nach Stabilisierung am KontrollsensorDie Leistung basiert auf einer Umgebungstemperatur von 75 °F (23,9 °C) und 50 % relativer LuftfeuchtigkeitKühl-/Heizleistung basierend auf der Messung am Regelfühler im ZuluftstromKonstruktionInnereNichtmagnetischer Edelstahl der Serie 300 mit hohem NickelgehaltHeliarc-geschweißte Innennähte sorgen für eine hermetische Abdichtung des LinersEcken und Nähte sind so gestaltet, dass sie sich bei extremen Temperaturen ausdehnen und zusammenziehen könnenDer Kondensatablauf befindet sich im Linerboden und unter dem KlimatisierungsplenumDer Kammerboden ist vollständig verschweißt„Ultra-Lite“-Glasfaserisolierung, die sich nicht absetztEin verstellbares Innenregal aus Edelstahl ist StandardAußenGesenkgeformtes, behandeltes StahlblechZugangsabdeckungen aus Metall ermöglichen das einfache Öffnen der Türen zu elektrischen KomponentenWasserbasierter, lufttrocknender Finish-Lack, der auf eine gereinigte und grundierte Oberfläche gesprüht wirdLeicht abhebbare Zugangstüren mit Scharnieren für die Wartung des KühlsystemsEine Zugangsöffnung mit 12,5 cm Durchmesser, Innenschweißung und abnehmbarem Isolierstopfen, montiert im rechten Seitenwandzubehör an der Flügeltür für einfachen ZugangMerkmaleChamber Operation zeigt hilfreiche Laufzeitinformationen übersichtlich anGraphing Screen bietet erweiterte Funktionen, verbesserte Programmierung und BerichterstellungDer Systemstatus zeigt wichtige Parameter des Kühlsystems anProgram Entry erleichtert das Laden, Anzeigen und Bearbeiten von ProfilenEinrichtungs-Schnellassistenten erleichtern die ProfileingabePopup-Kühldiagramme als praktische ReferenzTherm-Alarm® bietet Über- und UntertemperaturalarmschutzDer Aktivitätsprotokollbildschirm bietet einen umfassenden GeräteverlaufDer Webserver ermöglicht den Internetzugriff auf Geräte über EthernetDie benutzerfreundliche Popup-Tastatur ermöglicht eine schnelle und einfache DateneingabeBeinhaltet:- Vier USB-Anschlüsse – zwei externe und zwei interne- Ethernet- RS-232Technische Spezifikationen1–4 unabhängig programmierbare KanäleMessgenauigkeit: typisch 0,25 % der SpanneWählbare Temperaturskala in °C oder °F12,1 Zoll (30 cm) Farb-Flachbildschirm-Touchscreen-DisplayAuflösung: 0,1 °C, 0,1 % RH, 0,01 für andere lineare AnwendungenEchtzeituhr inklusiveAbtastrate: Prozessvariable, die alle 0,1 Sekunden abgetastet wirdProportionalband: Programmierbar 1,0° bis 300°Steuerungsmethode: DigitalIntervalle: UnbegrenztIntervallauflösung: 1 Sek. bis 99 Std., 59 Min. mit 1-Sekunden-Auflösung- RS-232- 10+ Jahre Datenspeicherung- Produkttemperaturkontrolle- Ereignis-RelaisplatineBetriebsmodi: Automatisch oder manuellProgrammspeicher: UnbegrenztProgrammschleifen:- Bis zu 64 Schleifen pro ProgrammSchleifen können im Programm bis zu 9.999 Mal wiederholt werden- Bis zu 64 verschachtelte Schleifen pro Stück sind zulässig
Arzneimittelstabilitätstest
Die Wirksamkeit und Sicherheit von Arzneimitteln haben große Aufmerksamkeit erregt, und es ist auch ein Lebensunterhaltsthema, dem das Land und die Regierung große Bedeutung beimessen. Die Stabilität von Arzneimitteln beeinflusst die Wirksamkeit und Sicherheit. Um die Qualität von Arzneimitteln und Lagerbehältern sicherzustellen, sollten Stabilitätstests durchgeführt werden, um deren Wirksamkeitszeit und Lagerzustand zu bestimmen. Der Stabilitätstest untersucht hauptsächlich, ob die Qualität von Arzneimitteln durch Umweltfaktoren wie Temperatur, Feuchtigkeit und Licht beeinflusst wird und ob sie sich mit der Zeit und der Korrelation zwischen ihnen ändert, und untersucht die Abbaukurve von Arzneimitteln, anhand derer die Wirksamkeitsdauer angenommen wird um die Wirksamkeit und Sicherheit von Arzneimitteln bei der Anwendung sicherzustellen. In diesem Artikel werden die für verschiedene Stabilitätstests erforderlichen Standardinformationen und Testmethoden als Referenz für Kunden zusammengestellt.
Erstens: Kriterien für den Arzneimittelstabilitätstest
Lagerbedingungen von Arzneimitteln:
Lagerbedingungen (Hinweis 2)
Langzeitexperiment
25℃±2℃ / 60%±5%RH oder
30℃±2℃ /65 % ± 5 % relative Luftfeuchtigkeit
Beschleunigter Test
40℃±2℃ / 75%±5%RH
Mittlerer Test (Anmerkung 1)
30℃±2℃ / 65%±5%RH
Hinweis 1: Wenn die Langzeittestbedingung auf 30℃±2℃/65 % ±5 % RH eingestellt wurde, gibt es keinen Mitteltest; Wenn die Langzeitlagerbedingungen 25 ℃ ± 2 ℃ / 60 % ± 5 % relative Luftfeuchtigkeit betragen und sich im beschleunigten Test eine signifikante Änderung ergibt, sollte ein mittlerer Test hinzugefügt werden. Und sollte anhand des Kriteriums „erhebliche Änderung“ beurteilt werden.
Hinweis 2: Versiegelte, undurchlässige Behälter wie Glasampullen können von Feuchtigkeitsbedingungen ausgenommen werden. Sofern nichts anderes bestimmt ist, sind alle Prüfungen entsprechend dem Stabilitätsprüfplan in der Zwischenprüfung durchzuführen.
Die beschleunigten Testdaten sollen sechs Monate lang verfügbar sein. Die Mindestdauer des Stabilitätstests beträgt 12 Monate für den Mitteltest und den Langzeittest.
Im Kühlschrank aufbewahren:
Lagerbedingungen
Langzeitexperiment
5℃±3℃
Beschleunigter Test
25℃±2℃ / 60%±5%RH
Im Gefrierschrank gelagert:
Lagerbedingungen
Langzeitexperiment
-20℃±5℃
Beschleunigter Test
5℃±3℃
Wenn das Produkt, das Wasser oder Lösungsmittel enthält, die einem Lösungsmittelverlust unterliegen können, in einem halbdurchlässigen Behälter verpackt ist, sollte die Stabilitätsbewertung über einen längeren Zeitraum bei niedriger relativer Luftfeuchtigkeit oder einem mittleren Test von 12 Monaten durchgeführt werden beschleunigter Test von 6 Monaten, um zu beweisen, dass das im semipermeablen Behälter befindliche Medikament der Umgebung mit niedriger relativer Luftfeuchtigkeit standhalten kann.
Enthält Wasser oder Lösungsmittel
Lagerbedingungen
Langzeitexperiment
25℃±2℃ / 40%±5%RH oder 30℃±2℃ /35 % ± 5 % relative Luftfeuchtigkeit
Beschleunigter Test
40℃±2℃;≤25%RH
Mittlerer Test (Anmerkung 1)
30℃±2℃ / 35%rF ±5%rF
Hinweis 1: Wenn die Langzeittestbedingung 30 ℃ ± 2 ℃ / 35 % ± 5 % relative Luftfeuchtigkeit beträgt, gibt es keinen Mitteltest.
Die Berechnung der relativen Wasserverlustrate bei einer konstanten Temperatur von 40℃ lautet wie folgt:
Ersetzte relative Luftfeuchtigkeit (A)
Kontrolle der relativen Luftfeuchtigkeit (R)
Verhältnis der Wasserverlustrate ([1-R]/[1-A])
60 % relative Luftfeuchtigkeit
25 % relative Luftfeuchtigkeit
1.9
60 % relative Luftfeuchtigkeit
40 % relative Luftfeuchtigkeit
1.5
65 % relative Luftfeuchtigkeit
35 % relative Luftfeuchtigkeit
1.9
75 % relative Luftfeuchtigkeit
25 % relative Luftfeuchtigkeit
3,0
Abbildung: Bei wässrigen Arzneimitteln in semipermeablen Behältern ist die Wasserverlustrate bei 25 % relativer Luftfeuchtigkeit dreimal so hoch wie bei 75 % relativer Luftfeuchtigkeit.
Zweitens: Lösungen zur Arzneimittelstabilität
Allgemeine Kriterien für Arzneimittelstabilitätstests
(Quelle: Food and Drug Administration, Ministerium für Gesundheit und Soziales)
Artikel
Lagerbedingungen
Langzeitexperiment
25 °C / 60 % relative Luftfeuchtigkeit
Beschleunigter Test
40 °C / 75 % relative Luftfeuchtigkeit
Mittlerer Test
30 °C/65 % relative Luftfeuchtigkeit
(1) Test mit großem Temperaturbereich
Artikel
Lagerbedingungen
Langzeitexperiment
Niedrige oder Minustemperaturbedingungen
Beschleunigter Test
Raumtemperatur und Luftfeuchtigkeit oder niedrige Temperaturbedingungen
(2) Testausrüstung
1. Prüfkammer für konstante Temperatur und Luftfeuchtigkeit
2. Prüfkammer für die Arzneimittelstabilität
Zuverlässigkeitstest für WärmerohreBei der Heatpipe-Technologie handelt es sich um ein von G.M. erfundenes Wärmeübertragungselement namens „Heatpipe“. Rover des Los Alamos National Laboratory im Jahr 1963, der das Prinzip der Wärmeleitung und die schnellen Wärmeübertragungseigenschaften des Kühlmediums voll ausnutzt und die Wärme des Heizobjekts über das Wärmerohr schnell an die Wärmequelle überträgt. Seine Wärmeleitfähigkeit übertrifft die jedes bekannten Metalls. Die Heatpipe-Technologie ist in der Luft- und Raumfahrt, im Militär und in anderen Branchen weit verbreitet, seit sie in der Kühlerherstellungsindustrie eingeführt wurde, was dazu führte, dass die Menschen die Designidee des traditionellen Kühlers änderten und den einzigen Wärmeableitungsmodus, auf den sie sich lediglich verlassen, abgeschafft haben Motor mit hohem Luftvolumen, um eine bessere Wärmeableitung zu erzielen. Durch den Einsatz der Heatpipe-Technologie kann der Kühler auch bei Verwendung eines Motors mit niedriger Drehzahl und geringem Luftvolumen zufriedenstellende Ergebnisse erzielen, sodass das durch die Luftkühlungswärme verursachte Geräuschproblem gut gelöst wurde und eine neue Welt in der Luftkühlung eröffnet wurde Wärmeableitungsindustrie.Testbedingungen für die Zuverlässigkeit von Wärmerohren:Hochtemperatur-Stresstest: 150℃/24 StundenTemperaturwechseltest:120℃(10min)←→-30℃(10min), Rampe: 0,5℃, 10 Zyklen 125℃(60min)←→-40℃(60min), Rampe: 2,75℃, 10 ZyklenThermoschocktest:120℃(2min)←→-30℃(2min), 250 Zyklen125℃(5min)←→-40℃(5min), 250 Zyklen100℃(5min)←→-50℃(5min), 2000 Zyklen (nach 200 Zyklen einmal prüfen)Test bei hoher Temperatur und hoher Luftfeuchtigkeit:85℃/85%R.H./1000 StundenBeschleunigter Alterungstest:110℃/85%RH/264hWeitere Heatpipe-Testgegenstände:Salzsprühtest, Festigkeitstest (Strahltest), Leckratentest, Vibrationstest, Zufallsvibrationstest, mechanischer Schocktest, Heliumverbrennungstest, Leistungstest, Windkanaltest
Natürlicher Konvektionstest (kein Windzirkulationstemperaturtest) und SpezifikationAudiovisuelle Heimunterhaltungsgeräte und Automobilelektronik gehören zu den Schlüsselprodukten vieler Hersteller, und das Produkt im Entwicklungsprozess muss die Anpassungsfähigkeit des Produkts an Temperatur und elektronische Eigenschaften bei verschiedenen Temperaturen simulieren. Wenn jedoch der allgemeine Ofen oder eine Testkammer mit konstanter Temperatur und Luftfeuchtigkeit zur Simulation der Temperaturumgebung verwendet wird, verfügen sowohl der Ofen als auch die Testkammer mit konstanter Temperatur und Luftfeuchtigkeit über einen Testbereich, der mit einem Umwälzventilator ausgestattet ist, sodass es in der Umgebung zu Problemen mit der Windgeschwindigkeit kommt Testbereich. Während des Tests wird die Temperaturgleichmäßigkeit durch die Rotation des Umwälzventilators ausgeglichen. Obwohl durch die Windzirkulation eine gleichmäßige Temperaturverteilung im Testbereich erreicht werden kann, wird die Wärme des zu testenden Produkts auch durch die zirkulierende Luft abgeführt, was in der windfreien Einsatzumgebung erheblich zu Unstimmigkeiten mit dem tatsächlichen Produkt führt (z. B. Wohnzimmer, Innenbereich). Aufgrund des Verhältnisses der Windzirkulation beträgt der Temperaturunterschied des zu testenden Produkts fast 10 ° C. Um die tatsächlichen Umgebungsbedingungen zu simulieren, werden viele Menschen missverstehen, dass nur die Testmaschine Temperatur erzeugen kann (z. B : Ofen, Prüfkammer mit konstanter Temperatur und Luftfeuchtigkeit) können einen natürlichen Konvektionstest durchführen, tatsächlich ist dies jedoch nicht der Fall. In der Spezifikation werden besondere Anforderungen an die Windgeschwindigkeit gestellt und eine Testumgebung ohne Windgeschwindigkeit gefordert. Durch die Testausrüstung für natürliche Konvektion (kein Test mit erzwungener Windzirkulation) wird eine Temperaturumgebung ohne Lüfter erzeugt (Test für natürliche Konvektion) und anschließend wird der Testintegrationstest durchgeführt, um die Temperatur des zu testenden Produkts zu ermitteln. Diese Lösung kann auf den tatsächlichen Umgebungstemperaturtest von haushaltsbezogenen elektronischen Produkten oder engen Räumen angewendet werden (z. B. großer LCD-Fernseher, Auto-Cockpit, Autoelektronik, Laptop, Desktop-Computer, Spielekonsole, Stereoanlage usw.).Der Unterschied der Testumgebung mit oder ohne Windzirkulation für den Test des zu testenden Produkts:Wenn das zu prüfende Produkt nicht mit Strom versorgt wird, erwärmt sich das zu prüfende Produkt nicht selbst, seine Wärmequelle nimmt nur die Luftwärme im Prüfofen auf, und wenn das zu prüfende Produkt mit Strom versorgt und erhitzt wird, wird die Windzirkulation im Ofen erzeugt Der Prüfofen entzieht dem zu prüfenden Produkt die Wärme. Mit jeder Zunahme der Windgeschwindigkeit um 1 Meter verringert sich die Wärme um etwa 10 %. Angenommen, die Temperatureigenschaften elektronischer Produkte werden in einer Innenumgebung ohne Klimaanlage simuliert, wenn ein Ofen oder eine Testkammer mit konstanter Temperatur und Luftfeuchtigkeit verwendet wird, um 35 ° C zu simulieren, obwohl die Umgebung im Testbereich innerhalb von 35 ° C gesteuert werden kann Durch elektrische Heizung und Gefrieren entziehen die Windzirkulation des Ofens und die Testkammer mit konstanter Temperatur und Luftfeuchtigkeit dem zu testenden Produkt Wärme, sodass die tatsächliche Temperatur des zu testenden Produkts niedriger ist als die Temperatur im realen Zustand ohne Wind. Daher ist es notwendig, eine Testmaschine für natürliche Konvektion ohne Windgeschwindigkeit zu verwenden, um die tatsächliche windstille Umgebung effektiv zu simulieren (z. B. Innenraum, nicht startendes Auto-Cockpit, Instrumentenchassis, wasserdichte Box im Freien usw.).Raumklima ohne Windzirkulation und solare Strahlungswärmeeinstrahlung:Simulieren Sie mithilfe des Testers für natürliche Konvektion die tatsächliche Nutzung der realen Konvektionsumgebung der Klimaanlage durch den Kunden, die Hot-Spot-Analyse und die Wärmeableitungseigenschaften der Produktbewertung, z. B. den LCD-Fernseher auf dem Foto, um nicht nur seine eigene Wärmeableitung zu berücksichtigen, sondern auch Um die Auswirkungen der Wärmestrahlung außerhalb des Fensters zu bewerten, kann die Wärmestrahlung für das Produkt zusätzliche Strahlungswärme über 35 ° C erzeugen.Vergleichstabelle der Windgeschwindigkeit und des zu testenden IC-Produkts:Wenn die Umgebungswindgeschwindigkeit schneller ist, entzieht die IC-Oberflächentemperatur aufgrund des Windzyklus auch die IC-Oberflächenwärme, was zu einer schnelleren Windgeschwindigkeit und niedrigeren Temperatur führt. Wenn die Windgeschwindigkeit 0 beträgt, beträgt die Temperatur 100 °C, aber wann Die Windgeschwindigkeit erreicht 5 m/s, die IC-Oberflächentemperatur lag unter 80 °C.Test der ungezwungenen Luftzirkulation:Gemäß den Spezifikationsanforderungen von IEC60068-2-2 ist es im Hochtemperaturtestprozess erforderlich, die Testbedingungen ohne erzwungene Luftzirkulation durchzuführen, der Testprozess muss unter der windfreien Zirkulationskomponente aufrechterhalten werden und das Der Hochtemperaturtest wird im Testofen durchgeführt, sodass der Test nicht in der Testkammer oder im Ofen mit konstanter Temperatur und Luftfeuchtigkeit durchgeführt werden kann und der natürliche Konvektionstester zur Simulation der freien Luftbedingungen verwendet werden kann.Beschreibung der Testbedingungen:Prüfvorgabe für ungezwungene Luftzirkulation: IEC-68-2-2, GB2423.2, GB2423.2-89 3.3.1Test der ungezwungenen Luftzirkulation: Der Testzustand der ungezwungenen Luftzirkulation kann den Zustand der freien Luft gut simulierenGB2423.2-89 3.1.1:Bei der Messung unter freien Luftbedingungen ist die Temperatur der Testprobe stabil, die Temperatur des heißesten Punktes auf der Oberfläche ist mehr als 5℃ höher als die Temperatur des umgebenden großen Geräts, es handelt sich um eine Wärmeableitungstestprobe. andernfalls handelt es sich um eine Testprobe ohne Wärmeableitung.GB2423.2-8 10 (Test des Wärmeableitungstests, Temperaturgradiententest der Probe):Es wird ein Standardtestverfahren bereitgestellt, um die Anpassungsfähigkeit thermischer elektronischer Produkte (einschließlich Komponenten, anderer Produkte auf Geräteebene) für den Einsatz bei hohen Temperaturen zu bestimmen.Testanforderungen:A. Prüfmaschine ohne forcierte Luftzirkulation (ausgestattet mit einem Ventilator oder Gebläse)B. Einzelnes TestmusterC. Die Heizrate beträgt nicht mehr als 1℃/minD. Nachdem die Temperatur der Testprobe Stabilität erreicht hat, wird die Testprobe mit Strom versorgt oder die elektrische Belastung des Hauses durchgeführt, um die elektrische Leistung zu ermittelnMerkmale der Testkammer mit natürlicher Konvektion:1. Kann die Wärmeabgabe des zu prüfenden Produkts nach dem Einschalten bewerten, um die beste Gleichmäßigkeit der Verteilung zu gewährleisten;2. In Kombination mit einem digitalen Datensammler können die relevanten Temperaturinformationen des zu testenden Produkts für eine synchrone Mehrspuranalyse effektiv gemessen werden.3. Zeichnen Sie die Informationen von mehr als 20 Schienen auf (synchrone Aufzeichnung der Temperaturverteilung im Testofen, Mehrspurtemperatur des zu prüfenden Produkts, Durchschnittstemperatur usw.).4. Der Controller kann den mehrspurigen Temperaturaufzeichnungswert und die Aufzeichnungskurve direkt anzeigen. Mehrspurige Prüfkurven können über den Controller auf einem USB-Stick gespeichert werden;5. Die Kurvenanalysesoftware kann die mehrspurige Temperaturkurve intuitiv anzeigen und EXCEL-Berichte ausgeben, und der Controller verfügt über drei Arten der Anzeige [Komplexes Englisch];6. Auswahl mehrerer Thermoelement-Temperatursensoren (B, E, J, K, N, R, S, T);7. Skalierbar, um die Heizrate zu erhöhen und die Stabilitätsplanung zu steuern.
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.