Banner
Heim

Testkammer mit konstantem Temperaturwechsel

Testkammer mit konstantem Temperaturwechsel

  • Was sind die Zuverlässigkeitstests für Leuchtdioden für die Kommunikation? Was sind die Zuverlässigkeitstests für Leuchtdioden für die Kommunikation?
    Jan 13, 2025
    Was sind die Zuverlässigkeitstests für Leuchtdioden für die Kommunikation?Fehlerbestimmung von zwei Leuchtröhren zur Kommunikation:Stellen Sie einen festen Strom bereit, um die optische Ausgangsleistung zu vergleichen. Wenn der Fehler größer als 10 % ist, wird der Fehler festgestellt.Mechanischer Stabilitätstest:Schocktest: 5 Takte/Achse, 1500 G, 0,5 ms Vibrationstest: 20 G, 20 ~ 2000 Hz, 4 Min./Zyklus, 4 Zyklen/Achse Flüssigkeits-Thermoschocktest: 100 ℃ (15 Sek.)←→0 ℃ (5 Sek.)/5 ZyklenHaltbarkeitstest:Beschleunigter Alterungstest: 85℃/Leistung (maximale Nennleistung)/5000 Stunden, 10000 StundenHochtemperatur-Lagertest: maximale Nennlagertemperatur /2000 StundenLagerungstest bei niedrigen Temperaturen: maximale Nennlagertemperatur /2000 StundenTemperaturzyklustest: -40℃(30min)←85℃(30min), RAMP: 10/min, 500ZyklenFeuchtigkeitsbeständigkeitstest: 40℃/95%/56 Tage, 85℃/85%/2000 Stunden, VersiegelungszeitScreening-Test für Kommunikationsdiodenelemente:Temperatur-Screening-Test: 85 °C/Leistung (maximale Nennleistung)/96 Stunden Screening-Fehlerbestimmung: Vergleichen Sie die optische Ausgangsleistung mit dem festen Strom und ermitteln Sie den Fehler, wenn der Fehler größer als 10 % ist.Screening-Test für Kommunikationsdiodenmodule:Schritt 1: Überprüfung des Temperaturzyklus: -40℃(30min)←→85℃(30min), RAMP: 10/min, 20 Zyklen, keine StromversorgungZweitens: Temperatur-Screening-Test: 85℃/Leistung (maximale Nennleistung)/96 Stunden
    Mehr lesen
  • Definition und Verwendung der Temperaturwechsel-Testkammer Definition und Verwendung der Temperaturwechsel-Testkammer
    Jan 08, 2025
    Definition und Verwendung der Temperaturwechsel-TestkammerTemperaturwechsel-Testkammer ist eine Art Laborgerät, das in verschiedenen Branchen weit verbreitet ist. Seine Hauptfunktion besteht darin, das Produkt innerhalb eines bestimmten Temperaturbereichs zyklisch zu betreiben, um den Betrieb des Produkts in unterschiedlichen Temperaturumgebungen zu simulieren. Die Ausrüstung ist ein wichtiges Werkzeug zur Durchführung von Produktzuverlässigkeitstests, Qualitätskontrolle und Produktleistungsbewertung.Die Temperaturwechselprüfkammer ist weit verbreitet und kann für Tests in verschiedenen Bereichen eingesetzt werden, beispielsweise in der Luft- und Raumfahrt, im Automobilbau, in der Elektronik, im Stromsektor, in der Medizintechnik und in anderen Bereichen. Im Luft- und Raumfahrtsektor werden Temperaturwechselprüfkammern eingesetzt, um die Leistung von Flugzeugkomponenten bei extremen Temperaturen zu testen und so deren Zuverlässigkeit in extremen Umgebungen sicherzustellen. Im Automobilbereich wird die Temperaturzyklus-Testkammer verwendet, um die Leistung von Automobilkomponenten unter verschiedenen Temperatur- und Feuchtigkeitsbedingungen zu testen, um sicherzustellen, dass das Auto in verschiedenen Umgebungen normal funktionieren kann. Im Bereich Elektronik und Energie werden Temperaturwechselprüfkammern verwendet, um die Leistung und Zuverlässigkeit elektronischer Geräte unter verschiedenen Temperaturbedingungen zu testen und sicherzustellen, dass die Geräte über einen langen Zeitraum stabil arbeiten können. Im medizinischen Bereich werden Temperaturwechselprüfkammern verwendet, um die Leistung und Zuverlässigkeit medizinischer Geräte unter verschiedenen Temperatur- und Feuchtigkeitsbedingungen zu testen und den normalen Betrieb der Geräte sicherzustellen.Das Funktionsprinzip der Temperaturwechseltestkammer besteht darin, den Wechseltest durch Kontrolle der Temperatur und Luftfeuchtigkeit in der Kammer durchzuführen. Das Gerät verfügt über verschiedene Temperaturregelungsmodi, wie z. B. konstante Temperaturregelung, programmierte Temperaturregelung, programmierte Temperaturregelung usw., die je nach Bedarf ausgewählt werden können. Während des Testvorgangs wird das Produkt in der Temperaturwechsel-Testkammer zum Testen in verschiedene Temperaturumgebungen gebracht, um die Verwendung des Produkts in verschiedenen Umgebungen zu simulieren. Nach Abschluss des Tests können Benutzer das Produkt entsprechend den Testergebnissen verbessern und aufrüsten, um die Zuverlässigkeit und Leistung des Produkts zu verbessern.Kurz gesagt handelt es sich bei der Temperaturwechsel-Testkammer um ein Laborgerät, das in verschiedenen Branchen weit verbreitet ist. Ihre Hauptfunktion besteht darin, das Produkt innerhalb eines bestimmten Temperaturbereichs zyklisch zu betreiben, um den Betrieb des Produkts in unterschiedlichen Temperaturumgebungen zu simulieren. Die Ausrüstung kann für Tests in verschiedenen Bereichen wie Luft- und Raumfahrt, Automobil, Elektronik, Energie, Medizin und anderen Bereichen eingesetzt werden und ist ein wichtiges Werkzeug für Produktzuverlässigkeitstests, Qualitätskontrolle und Produktleistungsbewertung.
    Mehr lesen
  • Grundsätze, denen der Betrieb einer Testkammer mit konstanter Temperatur und Luftfeuchtigkeit folgen sollte Grundsätze, denen der Betrieb einer Testkammer mit konstanter Temperatur und Luftfeuchtigkeit folgen sollte
    Dec 30, 2024
    Grundsätze, denen der Betrieb einer Testkammer mit konstanter Temperatur und Luftfeuchtigkeit folgen sollte Prüfkammer für konstante Temperatur und Luftfeuchtigkeit, auch bekannt als Prüfgerät für konstante Temperatur und Luftfeuchtigkeit, Wechselprüfkammer mit programmierbarer Temperatur und Luftfeuchtigkeit, Thermostat oder Kammer für konstante Temperatur und Luftfeuchtigkeit, kann zum Testen verschiedener Umgebungen und zum Testen der Materialleistung von Geräten verwendet werden. Dieses Material weist Hitzebeständigkeit, Kältebeständigkeit und Trockenheit auf Beständigkeit und Feuchtigkeitsbeständigkeit. Bei Verwendung der Testkammer mit konstanter Temperatur und Luftfeuchtigkeit hilft jedoch die korrekte Bedienung dabei, wissenschaftliche Daten für den Experimentator zu erhalten. Welche Grundsätze sollten also beim Betrieb der Testkammer mit konstanter Temperatur und Luftfeuchtigkeit befolgt werden?u200eErstens muss der Bediener bei der Umweltprüfung mit der erforderlichen Prüfmusterleistung, den Prüfbedingungen, den Prüfverfahren und der Prüftechnik vertraut sein, mit der technischen Leistung der verwendeten Prüfgeräte vertraut sein und insbesondere den Aufbau der Geräte verstehen mit der Kontrolle, Bedienung und Leistung. Lesen Sie gleichzeitig die Bedienungsanleitung des Testgeräts sorgfältig durch, um einen abnormalen Betrieb des Testgeräts aufgrund von Bedienungsfehlern zu vermeiden, der zu Schäden am Testmuster und falschen Testdaten führen kann. u200eZweitens: Um den normalen Testbetrieb sicherzustellen, sollten geeignete Testgeräte entsprechend den unterschiedlichen Bedingungen der Testprobe und einem angemessenen Verhältnis zwischen der Temperatur und Luftfeuchtigkeit der Testprobe und dem effektiven Volumen des Labors ausgewählt werden sollte beibehalten werden. Bei Prüfungen erhitzter Prüfkörper sollte das Volumen nicht größer als ein Zehntel des effektiven Volumens der Prüfkammer sein. Das Volumen der unbeheizten Prüfprobe sollte ein Fünftel des effektiven Volumens der Prüfkammer nicht überschreiten. u200eDrittens sollte bei Umwelttests, bei denen dem Test Medien hinzugefügt werden müssen, diese entsprechend den Testanforderungen korrekt hinzugefügt werden. u200e Beispielsweise gibt es bestimmte Anforderungen an Wasser in Temperatur- und Feuchtigkeitsprüfkammern und der Widerstand sollte reduziert werden. Es gibt eine günstigere und bequemere Form von reinem Wasser auf dem Markt. Sein Widerstand entspricht dem von destilliertem Wasser. u200eViertens gelten für Feuchtkugelgaze (Feuchtkugelpapier) bestimmte Anforderungen für die Verwendung in einer Temperatur- und Feuchtigkeitsprüfkammer, und Gaze kann nicht ersetzt werden, da der Messwert für die relative Luftfeuchtigkeit genau genommen die Differenz zwischen Wurzelabstand und Temperatur und Luftfeuchtigkeit ist , es hängt auch mit dem lokalen Luftdruck und der Windgeschwindigkeit zu diesem Zeitpunkt zusammen. Der Indikatorwert der Feuchtkugeltemperatur hängt von der Menge des von der Gaze aufgenommenen Wassers und der Menge der Oberflächenverdunstung ab. Diese stehen in direktem Zusammenhang mit der Qualität der Gaze, sodass das Wetter es erfordert, dass es sich bei der nassen Ballgaze um eine spezielle „nasse Ballgaze“ handelt, die aus Leinen gewebt ist. Andernfalls ist es schwierig, die Richtigkeit des Feuchtkugelthermometerwerts, also der Luftfeuchtigkeit, sicherzustellen. Darüber hinaus ist auch die Position der nassen Gaze klar vorgegeben. Gazelänge: 100 mm, Sensorsonde fest umwickeln, Sonde 25–30 mm vom Feuchtigkeitsbecher entfernt, Gaze in den Becher eingetaucht, um die Genauigkeit der Gerätesteuerung und Feuchtigkeit sicherzustellen. u200eFünftens sollte der Ort der Testprobe mehr als 10 cm von der Kammerwand entfernt sein und mehrere Proben sollten möglichst auf derselben Ebene platziert werden. Die Proben sollten so platziert werden, dass die Luftauslässe und Rückluftöffnungen nicht blockiert werden, und Temperatur- und Feuchtigkeitssensoren sollten in einiger Entfernung gehalten werden. Stellen Sie sicher, dass die Testtemperatur korrekt ist. u200eDurch den Betrieb der Testkammer mit konstanter Temperatur und Luftfeuchtigkeit gemäß den oben genannten Grundsätzen wird durch die korrekte Durchführung des Testprozesses das Niveau der Testdaten erheblich verbessert. Sofern die oben genannten Grundsätze eingehalten werden, kann davon ausgegangen werden, dass die Temperatur- und Feuchtigkeitstests erfolgreich durchgeführt werden können. u200e
    Mehr lesen
  • ESS Stress-Screening-Maschine für schnelle Temperaturänderungen ESS Stress-Screening-Maschine für schnelle Temperaturänderungen
    Dec 18, 2024
    ESS Stress-Screening-Maschine für schnelle TemperaturänderungenUmweltstress-Screening (ESS)Unter Belastungsscreening versteht man den Einsatz von Beschleunigungstechniken und Umgebungsbelastungen unterhalb der Konstruktionsfestigkeitsgrenze, wie z. B. Einbrennen, Temperaturwechsel, zufällige Vibration, Leistungszyklus ... Durch die Beschleunigung der Belastung treten potenzielle Mängel im Produkt auf [potenzielles Teilematerial]. Defekte, Konstruktionsfehler, Prozessfehler, Prozessfehler] und die Beseitigung elektronischer oder mechanischer Restspannungen sowie die Beseitigung von Streukondensatoren zwischen mehrschichtigen Leiterplatten, das frühe Todesstadium des Produkts in der Badkurve wird vorab entfernt und repariert , damit das Produkt durch mäßiges Screening gerettet werden kann Die normale Periode und die Abnahmeperiode der Badewannenkurve, um das Produkt während des Gebrauchsprozesses zu vermeiden, führen bei der Prüfung auf Umweltbelastungen manchmal zu Fehlern, was zu unnötigen Verlusten führt. Obwohl der Einsatz des ESS-Stressscreenings die Kosten und den Zeitaufwand erhöht, um die Produktausbeute zu verbessern und die Anzahl der Reparaturen zu verringern, gibt es einen erheblichen Effekt, aber die Gesamtkosten werden reduziert. Darüber hinaus wird auch das Vertrauen der Kunden gestärkt, im Allgemeinen sind die Stress-Screening-Methoden für elektronische Teile Vorbrennen, Temperaturzyklus, hohe Temperatur, niedrige Temperatur, PCB-Leiterplatten-Stress-Screening-Methode ist Temperaturzyklus, für die elektronischen Kosten der Beim Stressscreening handelt es sich um: Leistungsvorverbrennung, Temperaturwechsel, zufällige Vibration. Zusätzlich zum Stressscreen selbst handelt es sich um eine Prozessstufe und nicht um einen Test. Das Screening ist 100 % des Produktverfahrens.Produktmerkmale der Stress-Screening-Maschine mit schnellem Temperaturwechsel:1. Es können unterschiedliche Stress-Screening-Temperaturschwankungen von 5 °C/min, 10 °C/min und 15 °C/min eingestellt werden.2, Es kann schnelle Temperaturänderungen (Stress-Screening), Kondensationstests, hohe Temperaturen und Luftfeuchtigkeit, Temperatur- und Feuchtigkeitszyklen und andere Tests durchführen.3, Es erfüllt die Anforderungen des Stress-Screening-Tests für elektronische Geräte.4, Es kann zwischen zwei Testmethoden mit gleicher Temperatur und Durchschnittstemperatur umgeschaltet werden.Spezifikationsanforderungen der Stress-Screening-Maschine mit schnellem Temperaturwechsel:1. Es können verschiedene Stress-Screening-Testbedingungen (schnelle Temperaturschwankungen) von 5 °C/min, 10 °C/min und 15 °C/min eingestellt werden.2, Es erfüllt die Belastungsprüfung von Produkten für elektronische Geräte, bleifreies Verfahren, MIL-STD-2164, MIL-344A-4-16, MIL-2164A-19, NABMAT-9492, GJB-1032-90, GJB/Z34- 5.1.6, IPC-9701 und andere Testanforderungen.3, Es kann den Testmodus für gleiche Temperatur und Durchschnittstemperatur durchführen.4. Es wird Aluminiumblech verwendet, um die Tragfähigkeit der Maschine zu überprüfen (nichtplastische Last).
    Mehr lesen
  • Lab Companion-Schnelltemperaturwechsel-Testkammer Lab Companion-Schnelltemperaturwechsel-Testkammer
    Nov 13, 2024
    Lab Companion-Schnelltemperaturwechsel-TestkammerEinführung von Lab CompanionMit über 20 Jahren Erfahrung, Laborbegleiter ist ein erstklassiger Hersteller von Klimakammern und ein versierter Lieferant schlüsselfertiger Testsysteme und -geräte. Alle unsere Kammern bauen auf dem Ruf von Lab Companion für lange Lebensdauer und außergewöhnliche Zuverlässigkeit auf. Lab Companion hat im Hinblick auf Design, Herstellung und Service ein Qualitätsmanagementsystem eingerichtet, das der internationalen Qualitätssystemnorm ISO 9001:2008 entspricht. Das Gerätekalibrierungsprogramm von Lab Companion ist von A2LA nach dem internationalen Standard ISO 17025 und dem amerikanischen Nationalstandard ANSI/NCSL-Z-540-1 akkreditiert. A2LA ist Vollmitglied und Unterzeichner der International Laboratory Accreditation Cooperation (ILAC), der Asia Pacific Laboratory Accreditation (APLAC) und der European Cooperation for Accreditation (EA). Die Umwelttestkammern der SE-Serie von Lab Companion bieten ein deutlich verbessertes Luftstromsystem, das bessere Gradienten und verbesserte Änderungsraten der Produkttemperatur bietet. Diese Kammern nutzen den Flaggschiff-8800-Programmierer/Controller von Thermotron mit einem hochauflösenden 12,1-Zoll-Flachbildschirm mit Touchscreen-Benutzeroberfläche, erweiterten Funktionen zur grafischen Darstellung, Datenprotokollierung, Bearbeitung, Zugriff auf die Bildschirmhilfe und langfristiger Datenspeicherung auf der Festplatte.Wir bieten nicht nur Produkte von höchster Qualität, sondern bieten auch fortlaufenden Support, der dafür sorgt, dass Sie lange nach dem ersten Verkauf einsatzbereit bleiben. Wir bieten einen direkten Werksservice vor Ort mit einem umfangreichen Lagerbestand der Teile, die Sie möglicherweise benötigen. LeistungTemperaturbereich: -70°C bis +180°CLeistung: Bei einer Aluminiumlast von 23 kg (IEC60068-3-5) beträgt die Anstiegsrate von +85 °C auf -40 °C 15 °C/Minute; Die Abkühlgeschwindigkeit von -40°C bis +85°C beträgt ebenfalls 15℃/min.Temperaturregelung: ± 1 °C Trockenkugeltemperaturen vom Kontrollpunkt nach Stabilisierung am KontrollsensorDie Leistung basiert auf einer Umgebungstemperatur von 75 °F (23,9 °C) und 50 % relativer LuftfeuchtigkeitKühl-/Heizleistung basierend auf der Messung am Regelfühler im ZuluftstromKonstruktionInnereNichtmagnetischer Edelstahl der Serie 300 mit hohem NickelgehaltHeliarc-geschweißte Innennähte sorgen für eine hermetische Abdichtung des LinersEcken und Nähte sind so gestaltet, dass sie sich bei extremen Temperaturen ausdehnen und zusammenziehen könnenDer Kondensatablauf befindet sich im Linerboden und unter dem KlimatisierungsplenumDer Kammerboden ist vollständig verschweißt„Ultra-Lite“-Glasfaserisolierung, die sich nicht absetztEin verstellbares Innenregal aus Edelstahl ist StandardAußenGesenkgeformtes, behandeltes StahlblechZugangsabdeckungen aus Metall ermöglichen das einfache Öffnen der Türen zu elektrischen KomponentenWasserbasierter, lufttrocknender Finish-Lack, der auf eine gereinigte und grundierte Oberfläche gesprüht wirdLeicht abhebbare Zugangstüren mit Scharnieren für die Wartung des KühlsystemsEine Zugangsöffnung mit 12,5 cm Durchmesser, Innenschweißung und abnehmbarem Isolierstopfen, montiert im rechten Seitenwandzubehör an der Flügeltür für einfachen ZugangMerkmaleChamber Operation zeigt hilfreiche Laufzeitinformationen übersichtlich anGraphing Screen bietet erweiterte Funktionen, verbesserte Programmierung und BerichterstellungDer Systemstatus zeigt wichtige Parameter des Kühlsystems anProgram Entry erleichtert das Laden, Anzeigen und Bearbeiten von ProfilenEinrichtungs-Schnellassistenten erleichtern die ProfileingabePopup-Kühldiagramme als praktische ReferenzTherm-Alarm® bietet Über- und UntertemperaturalarmschutzDer Aktivitätsprotokollbildschirm bietet einen umfassenden GeräteverlaufDer Webserver ermöglicht den Internetzugriff auf Geräte über EthernetDie benutzerfreundliche Popup-Tastatur ermöglicht eine schnelle und einfache DateneingabeBeinhaltet:- Vier USB-Anschlüsse – zwei externe und zwei interne- Ethernet- RS-232Technische Spezifikationen1–4 unabhängig programmierbare KanäleMessgenauigkeit: typisch 0,25 % der SpanneWählbare Temperaturskala in °C oder °F12,1 Zoll (30 cm) Farb-Flachbildschirm-Touchscreen-DisplayAuflösung: 0,1 °C, 0,1 % RH, 0,01 für andere lineare AnwendungenEchtzeituhr inklusiveAbtastrate: Prozessvariable, die alle 0,1 Sekunden abgetastet wirdProportionalband: Programmierbar 1,0° bis 300°Steuerungsmethode: DigitalIntervalle: UnbegrenztIntervallauflösung: 1 Sek. bis 99 Std., 59 Min. mit 1-Sekunden-Auflösung- RS-232- 10+ Jahre Datenspeicherung- Produkttemperaturkontrolle- Ereignis-RelaisplatineBetriebsmodi: Automatisch oder manuellProgrammspeicher: UnbegrenztProgrammschleifen:- Bis zu 64 Schleifen pro ProgrammSchleifen können im Programm bis zu 9.999 Mal wiederholt werden- Bis zu 64 verschachtelte Schleifen pro Stück sind zulässig
    Mehr lesen
  • Arzneimittelstabilitätstest Arzneimittelstabilitätstest
    Oct 31, 2024
    Arzneimittelstabilitätstest Die Wirksamkeit und Sicherheit von Arzneimitteln haben große Aufmerksamkeit erregt, und es ist auch ein Lebensunterhaltsthema, dem das Land und die Regierung große Bedeutung beimessen. Die Stabilität von Arzneimitteln beeinflusst die Wirksamkeit und Sicherheit. Um die Qualität von Arzneimitteln und Lagerbehältern sicherzustellen, sollten Stabilitätstests durchgeführt werden, um deren Wirksamkeitszeit und Lagerzustand zu bestimmen. Der Stabilitätstest untersucht hauptsächlich, ob die Qualität von Arzneimitteln durch Umweltfaktoren wie Temperatur, Feuchtigkeit und Licht beeinflusst wird und ob sie sich mit der Zeit und der Korrelation zwischen ihnen ändert, und untersucht die Abbaukurve von Arzneimitteln, anhand derer die Wirksamkeitsdauer angenommen wird um die Wirksamkeit und Sicherheit von Arzneimitteln bei der Anwendung sicherzustellen. In diesem Artikel werden die für verschiedene Stabilitätstests erforderlichen Standardinformationen und Testmethoden als Referenz für Kunden zusammengestellt. Erstens: Kriterien für den Arzneimittelstabilitätstest Lagerbedingungen von Arzneimitteln:   Lagerbedingungen (Hinweis 2) Langzeitexperiment 25℃±2℃ / 60%±5%RH oder 30℃±2℃ /65 % ± 5 % relative Luftfeuchtigkeit Beschleunigter Test 40℃±2℃ / 75%±5%RH Mittlerer Test (Anmerkung 1) 30℃±2℃ / 65%±5%RH Hinweis 1: Wenn die Langzeittestbedingung auf 30℃±2℃/65 % ±5 % RH eingestellt wurde, gibt es keinen Mitteltest; Wenn die Langzeitlagerbedingungen 25 ℃ ± 2 ℃ / 60 % ± 5 % relative Luftfeuchtigkeit betragen und sich im beschleunigten Test eine signifikante Änderung ergibt, sollte ein mittlerer Test hinzugefügt werden. Und sollte anhand des Kriteriums „erhebliche Änderung“ beurteilt werden. Hinweis 2: Versiegelte, undurchlässige Behälter wie Glasampullen können von Feuchtigkeitsbedingungen ausgenommen werden. Sofern nichts anderes bestimmt ist, sind alle Prüfungen entsprechend dem Stabilitätsprüfplan in der Zwischenprüfung durchzuführen. Die beschleunigten Testdaten sollen sechs Monate lang verfügbar sein. Die Mindestdauer des Stabilitätstests beträgt 12 Monate für den Mitteltest und den Langzeittest.   Im Kühlschrank aufbewahren:   Lagerbedingungen Langzeitexperiment 5℃±3℃ Beschleunigter Test 25℃±2℃ / 60%±5%RH   Im Gefrierschrank gelagert:   Lagerbedingungen Langzeitexperiment -20℃±5℃ Beschleunigter Test 5℃±3℃ Wenn das Produkt, das Wasser oder Lösungsmittel enthält, die einem Lösungsmittelverlust unterliegen können, in einem halbdurchlässigen Behälter verpackt ist, sollte die Stabilitätsbewertung über einen längeren Zeitraum bei niedriger relativer Luftfeuchtigkeit oder einem mittleren Test von 12 Monaten durchgeführt werden beschleunigter Test von 6 Monaten, um zu beweisen, dass das im semipermeablen Behälter befindliche Medikament der Umgebung mit niedriger relativer Luftfeuchtigkeit standhalten kann.   Enthält Wasser oder Lösungsmittel   Lagerbedingungen Langzeitexperiment 25℃±2℃ / 40%±5%RH oder 30℃±2℃ /35 % ± 5 % relative Luftfeuchtigkeit Beschleunigter Test 40℃±2℃;≤25%RH Mittlerer Test (Anmerkung 1) 30℃±2℃ / 35%rF ±5%rF Hinweis 1: Wenn die Langzeittestbedingung 30 ℃ ± 2 ℃ / 35 % ± 5 % relative Luftfeuchtigkeit beträgt, gibt es keinen Mitteltest.   Die Berechnung der relativen Wasserverlustrate bei einer konstanten Temperatur von 40℃ lautet wie folgt: Ersetzte relative Luftfeuchtigkeit (A) Kontrolle der relativen Luftfeuchtigkeit (R) Verhältnis der Wasserverlustrate ([1-R]/[1-A]) 60 % relative Luftfeuchtigkeit 25 % relative Luftfeuchtigkeit 1.9 60 % relative Luftfeuchtigkeit 40 % relative Luftfeuchtigkeit 1.5 65 % relative Luftfeuchtigkeit 35 % relative Luftfeuchtigkeit 1.9 75 % relative Luftfeuchtigkeit 25 % relative Luftfeuchtigkeit 3,0 Abbildung: Bei wässrigen Arzneimitteln in semipermeablen Behältern ist die Wasserverlustrate bei 25 % relativer Luftfeuchtigkeit dreimal so hoch wie bei 75 % relativer Luftfeuchtigkeit.   Zweitens: Lösungen zur Arzneimittelstabilität Allgemeine Kriterien für Arzneimittelstabilitätstests (Quelle: Food and Drug Administration, Ministerium für Gesundheit und Soziales) Artikel Lagerbedingungen Langzeitexperiment 25 °C / 60 % relative Luftfeuchtigkeit Beschleunigter Test 40 °C / 75 % relative Luftfeuchtigkeit Mittlerer Test 30 °C/65 % relative Luftfeuchtigkeit   (1) Test mit großem Temperaturbereich Artikel Lagerbedingungen Langzeitexperiment Niedrige oder Minustemperaturbedingungen Beschleunigter Test Raumtemperatur und Luftfeuchtigkeit oder niedrige Temperaturbedingungen   (2) Testausrüstung 1. Prüfkammer für konstante Temperatur und Luftfeuchtigkeit 2. Prüfkammer für die Arzneimittelstabilität
    Mehr lesen
  • Laptop-Testbedingungen Laptop-Testbedingungen
    Oct 16, 2024
    Laptop-TestbedingungenNotebook-Computer von der frühen 12-Zoll-Bildschirmentwicklung bis zum aktuellen LED-Hintergrundbeleuchtungsbildschirm, seine Recheneffizienz und 3D-Verarbeitung werden nicht an den allgemeinen Desktop-Computer verloren gehen, und das Gewicht wird immer weniger belastet, die relativen Zuverlässigkeitstestanforderungen für Der gesamte Notebook-Computer wird immer strenger, von der frühen Verpackung bis zum aktuellen Boot-Down, den traditionellen hohen Temperaturen und hoher Luftfeuchtigkeit bis hin zum aktuellen Kondensationstest. Vom Temperatur- und Feuchtigkeitsbereich der allgemeinen Umgebung bis hin zum Wüstentest als allgemeine Bedingung sind dies die Teile, die bei der Herstellung von Komponenten und Designs für Notebook-Computer berücksichtigt werden müssen, sowie die bisher gesammelten Testbedingungen der relevanten Umwelttests werden organisiert und mit Ihnen geteilt.Tipptest auf der Tastatur:Testen Sie eins:GB: 1 Million MalTastendruck: 0,3–0,8 (N)Tastenhub: 0,3 ~ 1,5 (mm)Test 2: Tastendruck: 75 g (± 10 g). Testen Sie 10 Tasten 14 Tage lang, 240 Mal pro Minute, insgesamt etwa 4,83 Millionen Mal, einmal alle 1 Million MalJapanische Hersteller: 2 bis 5 Millionen MalTaiwan-Hersteller 1: mehr als 8 Millionen MalTaiwan-Hersteller 2:10 Millionen MalNetzschalter und Stecker-Zugtest:Dieses Testmodell simuliert die seitlichen Kräfte, denen jeder Steckverbinder bei ungewöhnlicher Nutzung standhalten kann. Allgemeine Laptop-Testgegenstände: USB, 1394, PS2, RJ45, Modem, VGA ... Gleiche Anwendungskraft 5 kg (50 Mal), nach oben und unten, links und rechts ziehen und einstecken.Netzschalter- und Steckertest:4000 Mal (Stromversorgung)Test zum Öffnen und Schließen der Bildschirmabdeckung:Taiwanesische Hersteller: 20.000 Mal öffnen und schließenJapanischer Hersteller 1: Öffnungs- und Schließtest 85.000 MalJapanischer Hersteller 2: 30.000 Mal öffnen und schließenTest des System-Standby- und Wiederherstellungsschalters:Allgemeiner Notentyp: Intervall 10 Sekunden, 1000 ZyklenJapanischer Hersteller: System-Standby- und Wiederherstellungsschaltertest 2000 MalHäufige Ursachen für Laptop-Ausfälle:☆ Fremdkörper fallen auf das Notebook☆ Fällt während des Gebrauchs vom Tisch☆ Verstauen Sie das Notebook in einer Handtasche oder einem Trolley☆ Extrem hohe oder niedrige Temperatur ☆ Normaler Gebrauch (Überbeanspruchung)☆ Falsche Verwendung in touristischen Zielen☆PCMCIA falsch eingelegt☆ Platzieren Sie Fremdkörper auf der TastaturFalltest beim Herunterfahren:Allgemeiner Notebook-Typ: 76 cmGB-Paketabfall: 100 cmNotebook-Computer der US-Armee und Japans: Die Höhe des Computers beträgt 90 cm von allen Seiten, Seiten, Ecken, insgesamt 26 SeitenPlattform: 74 cm (Verpackung erforderlich)Land: 90 cm (Verpackung erforderlich)TOSHIBA&BENQ 100 cmBoot-Drop-Test:Japanisch: 10 cm StiefelhöheTaiwan: 74 cm StiefelsturzTemperaturschock der Laptop-Hauptplatine:Steigung 20℃/minAnzahl der Zyklen 50 Zyklen (kein Betrieb während des Aufpralls)Die technischen Standards und Testbedingungen des US-Militärs für die Laptop-Beschaffung lauten wie folgt:Aufpralltest: Lassen Sie den Computer 26 Mal von allen Seiten, Seiten und Ecken aus einer Höhe von 90 cm fallenErdbebenbeständigkeitstest: 20 Hz ~ 1000 Hz, 1000 Hz ~ 2000 Hz Frequenz einmal pro Stunde, kontinuierliche Vibration der X-, Y- und Z-AchseTemperaturtest: 0℃~60℃ 72 Stunden AlterungsofenWasserdichtigkeitstest: Sprühen Sie 10 Minuten lang Wasser in alle Richtungen auf den Computer, die Wassersprühgeschwindigkeit beträgt 1 mm pro MinuteStaubtest: Sprühen Sie die Konzentration von 60.000 mg/pro Kubikmeter Staub 2 Sekunden lang (Intervall von 10 Minuten, 10 aufeinanderfolgende Male, Zeit 1 Stunde)Erfüllt die militärischen Spezifikationen MIL-STD-810Wasserdichtigkeitstest:Notebook der US-Armee: Schutzklasse: IP54 (Staub und Regen). Besprühte den Computer 10 Minuten lang mit Wasser in alle Richtungen mit einer Geschwindigkeit von 1 mm pro Minute.Staubdichtigkeitstest:Notizbuch der US-Armee: Sprühen Sie 2 Sekunden lang eine Staubkonzentration von 60.000 mg/m3 (10-Minuten-Intervalle, 10 aufeinanderfolgende Male, Dauer 1 Stunde). 
    Mehr lesen
  • Begriffe zu Temperatur und Luftfeuchtigkeit Begriffe zu Temperatur und Luftfeuchtigkeit
    Oct 14, 2024
    Begriffe zu Temperatur und LuftfeuchtigkeitBei der Taupunkttemperatur Td ändert sich der Wasserdampfgehalt der Luft nicht und hält einen bestimmten Druck aufrecht, so dass die Luft beim Abkühlen die Sättigungstemperatur erreicht, die als Taupunkttemperatur bezeichnet wird und als Taupunkt bezeichnet wird. Die Einheit wird in ° C oder ℉ ausgedrückt. Dabei handelt es sich tatsächlich um die Temperatur, bei der sich Wasserdampf und Wasser im Gleichgewicht befinden. Die Differenz zwischen der tatsächlichen Temperatur (t) und der Taupunkttemperatur (Td) gibt an, wie weit die Luft gesättigt ist. Wenn t>Td, bedeutet dies, dass die Luft nicht gesättigt ist, wenn t=Td, ist sie gesättigt, und wenn t
    Mehr lesen
  • Wärmeleitungszone Wärmeleitungszone
    Oct 14, 2024
    WärmeleitungszoneWärmeleitfähigkeitEs handelt sich um die Wärmeleitfähigkeit einer Substanz, die innerhalb derselben Substanz von einer hohen Temperatur zu einer niedrigen Temperatur übergeht. Auch bekannt als: Wärmeleitfähigkeit, Wärmeleitfähigkeit, Wärmeleitfähigkeit, Wärmeübergangskoeffizient, Wärmeübertragung, Wärmeleitfähigkeit, Wärmeleitfähigkeit, Wärmeleitfähigkeit.Wärmeleitfähigkeitsformelk = (Q/t) *L/(A*T) k: Wärmeleitfähigkeit, Q: Wärme, t: Zeit, L: Länge, A: Fläche, T: Temperaturdifferenz in SI-Einheiten, die Einheit der Wärmeleitfähigkeit ist W/(m*K), in imperialen Einheiten, ist Btu · ft/(h · ft2 · °F)WärmeübergangskoeffizientIn der Thermodynamik, im Maschinenbau und in der Chemietechnik wird die Wärmeleitfähigkeit zur Berechnung der Wärmeleitung verwendet, hauptsächlich der Wärmeleitung der Konvektion oder der Phasenumwandlung zwischen Flüssigkeit und Feststoff, die als Wärme durch die Flächeneinheit pro Zeiteinheit definiert ist Die Einheit der Temperaturdifferenz wird als Wärmeleitfähigkeitskoeffizient des Stoffes bezeichnet. Wenn die Dicke der Masse L ist, muss der Messwert mit L multipliziert werden. Der resultierende Wert ist der Wärmeleitfähigkeitskoeffizient, der normalerweise als k bezeichnet wird.Einheitenumrechnung des Wärmeleitungskoeffizienten1 (CAL) = 4,186 (j), 1 (CAL/s) = 4,186 (j/s) = 4,186 (W).Die Auswirkungen hoher Temperaturen auf elektronische Produkte:Der Temperaturanstieg führt zu einer Verringerung des Widerstandswerts des Widerstands, verkürzt aber auch die Lebensdauer des Kondensators. Darüber hinaus führt die hohe Temperatur dazu, dass der Transformator die Leistung der zugehörigen Isoliermaterialien verringert und die Temperatur ebenfalls abnimmt Ein hoher Wert führt auch dazu, dass sich die Struktur der Lötverbindungslegierung auf der Leiterplatte ändert: IMC wird dicker, Lötverbindungen werden spröde, Zinn-Whisker nehmen zu, die mechanische Festigkeit nimmt ab, die Sperrschichttemperatur steigt, das Stromverstärkungsverhältnis des Transistors steigt schnell an, was zu einem Anstieg des Kollektorstroms führt , die Sperrschichttemperatur steigt weiter an und schließlich kommt es zum Ausfall der Komponente.Erklärung der richtigen Begriffe:Sperrschichttemperatur: Die tatsächliche Temperatur eines Halbleiters in einem elektronischen Gerät. Im Betrieb ist sie normalerweise höher als die Gehäusetemperatur des Gehäuses, und die Temperaturdifferenz entspricht dem Wärmestrom multipliziert mit dem Wärmewiderstand. Freie Konvektion (natürliche Konvektion) : Strahlung (Strahlung) : Zwangsluft (Gaskühlung) : Zwangsflüssigkeit (Gaskühlung) : Flüssigkeitsverdunstung: Oberfläche Umgebung UmgebungAllgemeine einfache Überlegungen zum thermischen Design:1 Um Kosten und Ausfälle zu reduzieren, sollten einfache und zuverlässige Kühlmethoden wie Wärmeleitung, natürliche Konvektion und Strahlung eingesetzt werden.2 Verkürzen Sie den Wärmeübertragungsweg so weit wie möglich und vergrößern Sie die Wärmeaustauschfläche.3 Bei der Installation von Komponenten sollte der Einfluss des Strahlungswärmeaustauschs peripherer Komponenten vollständig berücksichtigt werden, und die thermisch empfindlichen Geräte sollten von der Wärmequelle ferngehalten werden oder eine Möglichkeit gefunden werden, die Schutzmaßnahmen des Hitzeschilds zu nutzen, um die Komponenten davon zu isolieren die Wärmequelle.4 Zwischen Lufteinlass und Auslass muss ein ausreichender Abstand vorhanden sein, um einen Heißluftrückfluss zu vermeiden.5 Der Temperaturunterschied zwischen der Zuluft und der Abluft sollte weniger als 14 °C betragen.6 Es ist zu beachten, dass die Richtung der Zwangsbelüftung und der natürlichen Belüftung möglichst konsistent sein sollte.7 Geräte mit großer Hitze sollten so nah wie möglich an der Oberfläche installiert werden, die die Wärme leicht ableiten kann (z. B. der Innenfläche des Metallgehäuses, der Metallbasis und der Metallhalterung usw.), und zwischen denen eine gute Kontaktwärmeleitung besteht die Oberfläche.8 Der Stromversorgungsteil der Hochleistungsröhre und der Gleichrichterbrückenstapel gehören zum Heizgerät. Am besten direkt am Gehäuse installieren, um die Wärmeableitungsfläche zu vergrößern. Beim Layout der Leiterplatte sollten mehr Kupferschichten auf der Leiterplattenoberfläche rund um den größeren Leistungstransistor belassen werden, um die Wärmeableitungskapazität der Bodenplatte zu verbessern.9 Vermeiden Sie bei freier Konvektion den Einsatz von zu dichten Kühlkörpern.10 Das thermische Design sollte berücksichtigt werden, um sicherzustellen, dass die Strombelastbarkeit des Drahtes und der Durchmesser des ausgewählten Drahtes für die Stromleitung geeignet sein müssen, ohne dass ein Temperaturanstieg und ein Druckabfall über dem zulässigen Wert liegen.11 Wenn die Wärmeverteilung gleichmäßig ist, sollte der Abstand der Komponenten gleichmäßig sein, damit der Wind gleichmäßig durch jede Wärmequelle strömt.12 Bei Verwendung von erzwungener Konvektionskühlung (Lüfter) platzieren Sie die temperaturempfindlichen Komponenten möglichst nahe am Lufteinlass.13 Der Einsatz von Kühlgeräten mit freier Konvektion soll verhindern, dass andere Teile über den Teilen mit hohem Stromverbrauch angeordnet werden. Der richtige Ansatz sollte eine ungleichmäßige horizontale Anordnung sein.14 Wenn die Wärmeverteilung nicht gleichmäßig ist, sollten die Komponenten im Bereich mit großer Wärmeentwicklung spärlich angeordnet werden, und die Komponentenanordnung im Bereich mit geringer Wärmeentwicklung sollte etwas dichter sein oder eine Umleitungsschiene hinzufügen, damit die Windenergie kann effektiv zu den wichtigsten Heizgeräten fließen.15 Das strukturelle Konstruktionsprinzip des Lufteinlasses: Versuchen Sie einerseits, seinen Widerstand gegen den Luftstrom zu minimieren, andererseits berücksichtigen Sie die Staubvermeidung und berücksichtigen Sie die Auswirkungen beider umfassend.16 Stromverbrauchskomponenten sollten so weit wie möglich voneinander entfernt sein.17 Vermeiden Sie es, temperaturempfindliche Teile zusammenzudrängen oder sie neben Teilen mit hohem Stromverbrauch oder heißen Stellen anzuordnen.18 Bei der Verwendung von Kühlgeräten mit freier Konvektion ist eine ungleichmäßige horizontale Anordnung die richtige Vorgehensweise, um die Anordnung anderer Teile oberhalb der Teile mit hohem Stromverbrauch zu vermeiden.
    Mehr lesen
  • Temperaturzyklisches Stress-Screening (1) Temperaturzyklisches Stress-Screening (1)
    Oct 14, 2024
    Temperaturzyklisches Stress-Screening (1)Umweltstress-Screening (ESS)Unter Belastungsscreening versteht man den Einsatz von Beschleunigungstechniken und Umgebungsbelastungen unterhalb der konstruktiven Festigkeitsgrenze, wie z. B. Einbrennen, Temperaturwechsel, zufällige Vibrationen, Leistungszyklen usw. Durch die Beschleunigung der Belastung treten potenzielle Mängel im Produkt auf [potenzielles Teilematerial]. Defekte, Konstruktionsfehler, Prozessfehler, Prozessfehler] und die Beseitigung elektronischer oder mechanischer Restspannungen sowie die Beseitigung von Streukondensatoren zwischen mehrschichtigen Leiterplatten, das frühe Todesstadium des Produkts in der Badkurve wird vorab entfernt und repariert , so dass das Produkt durch mäßiges Screening, Speichern Sie die normale Periode und die Abnahmeperiode der Badewannenkurve, um zu vermeiden, dass das Produkt im Prozess der Verwendung, der Test der Umweltbelastung manchmal zu Fehlern führt, was zu unnötigen Verlusten führt. Obwohl der Einsatz des ESS-Stressscreenings die Kosten und den Zeitaufwand erhöht, um die Produktausbeute zu verbessern und die Anzahl der Reparaturen zu verringern, gibt es einen erheblichen Effekt, aber die Gesamtkosten werden reduziert. Darüber hinaus wird auch das Vertrauen der Kunden gestärkt, im Allgemeinen sind die Stress-Screening-Methoden für elektronische Teile Vorbrennen, Temperaturzyklus, hohe Temperatur, niedrige Temperatur, PCB-Leiterplatten-Stress-Screening-Methode ist Temperaturzyklus, für die elektronischen Kosten der Beim Stressscreening handelt es sich um: Leistungsvorverbrennung, Temperaturwechsel, zufällige Vibration. Zusätzlich zum Stressscreen selbst handelt es sich um eine Prozessstufe und nicht um einen Test. Das Screening ist 100 % des Produktverfahrens.Stress-Screening der anwendbaren Produktphase: Forschungs- und Entwicklungsphase, Massenproduktionsphase, vor der Auslieferung (Screening-Tests können an Komponenten, Geräten, Steckverbindern und anderen Produkten oder am gesamten Maschinensystem durchgeführt werden, je nach Anforderungen können unterschiedliche Screening-Belastungen auftreten)Stress-Screening-Vergleich:A. Das Stress-Screening vor dem Einbrennen (Burn-In) bei konstant hoher Temperatur ist derzeit die in der IT-Elektronikindustrie am häufigsten verwendete Methode, um Defekte an elektronischen Bauteilen auszuschließen. Diese Methode eignet sich jedoch laut Statistik nicht zum Screening von Teilen (Leiterplatten, ICs, Widerstände, Kondensatoren). , ist die Anzahl der Unternehmen in den Vereinigten Staaten, die Temperaturzyklen zum Sieben von Teilen verwenden, fünfmal höher als die Anzahl der Unternehmen, die zum Sieben von Komponenten ein Vorbrennen bei konstant hoher Temperatur verwenden.B. GJB/DZ34 Gibt den Anteil der Temperaturzyklus- und zufälligen Vibrationssiebauswahlfehler an, wobei die Temperatur etwa 80 % und die Vibration etwa 20 % der Fehler bei verschiedenen Produkten ausmachte.C. Die Vereinigten Staaten haben eine Umfrage unter 42 Unternehmen durchgeführt. Zufällige Vibrationsbelastungen können 15 bis 25 % der Fehler aussortieren, während der Temperaturzyklus 75 bis 85 % aussortieren kann, wenn die Kombination beider 90 % erreichen kann.D. Der Anteil der durch Temperaturwechsel erkannten Produktfehlertypen: unzureichender Designspielraum: 5 %, Produktions- und Verarbeitungsfehler: 33 %, fehlerhafte Teile: 62 %Beschreibung der Fehlerinduktion des Temperatur-Zyklus-Stress-Screenings:Die Ursache für Produktausfälle aufgrund von Temperaturwechseln ist: Wenn die Temperatur zwischen den oberen und unteren Extremtemperaturen schwankt, führt das Produkt zu einer abwechselnden Ausdehnung und Kontraktion, was zu thermischer Belastung und Spannung im Produkt führt. Wenn im Produkt eine vorübergehende Wärmeleiter (Temperaturungleichmäßigkeit) vorhanden ist oder die Wärmeausdehnungskoeffizienten benachbarter Materialien im Produkt nicht übereinstimmen, sind diese thermischen Spannungen und Dehnungen drastischer. Diese Spannung und Dehnung sind am Defekt am größten, und dieser Zyklus führt dazu, dass der Defekt so groß wird, dass er schließlich zu Strukturversagen und Stromausfällen führen kann. Beispielsweise reißt ein gerissenes galvanisches Durchgangsloch irgendwann vollständig um es herum auf, was zu einem offenen Stromkreis führt. Die Temperaturwechselbeanspruchung ermöglicht das Löten und Plattieren von Durchgangslöchern auf Leiterplatten. Der Temperatur-Zyklus-Stress-Screening eignet sich besonders für elektronische Produkte mit Leiterplattenstruktur.Der durch den Temperaturzyklus oder die Auswirkungen auf das Produkt ausgelöste Fehlermodus ist wie folgt:A. Die Ausdehnung verschiedener mikroskopischer Risse in der Beschichtung, im Material oder im DrahtB. Lösen Sie schlecht haftende VerbindungenC. Lösen Sie nicht ordnungsgemäß verbundene oder genietete VerbindungenD. Entspannen Sie die verpressten Fittings bei unzureichender mechanischer Spannunge. Erhöhen Sie den Kontaktwiderstand minderwertiger Lötstellen oder verursachen Sie einen offenen StromkreisF. Partikel, chemische VerschmutzungG. DichtungsfehlerH. Verpackungsprobleme, z. B. Verklebung von Schutzbeschichtungenich. Kurzschluss oder Unterbrechung des Transformators und der SpuleJ. Das Potentiometer ist defektk. Schlechte Verbindung von Schweiß- und Schweißpunktenl. KaltschweißkontaktM. Mehrschichtige Platine aufgrund unsachgemäßer Handhabung von offenem Stromkreis, KurzschlussN. Kurzschluss des LeistungstransistorsO. Kondensator, Transistor defektP. Fehler bei zweireihiger integrierter SchaltungQ. Eine Box oder ein Kabel, das aufgrund von Beschädigung oder unsachgemäßer Montage fast kurzgeschlossen istR. Bruch, Bruch, Riefenbildung des Materials durch unsachgemäße Handhabung... usw.S. Teile und Materialien, die außerhalb der Toleranz liegenT. Widerstand gerissen aufgrund fehlender Pufferbeschichtung aus synthetischem Gummiu. Das Transistorhaar ist an der Erdung des Metallbandes beteiligtv. Bruch der Glimmer-Isolierungsdichtung, was zu einem Kurzschluss des Transistors führtw. Eine unsachgemäße Befestigung der Metallplatte der Regelspule führt zu unregelmäßiger LeistungX. Die bipolare Vakuumröhre ist bei niedriger Temperatur innen offenj. Indirekter Spulenkurzschlussz. Ungeerdete Anschlüssea1. Drift der Komponentenparametera2. Komponenten sind unsachgemäß installierta3. Falsch verwendete Komponentena4. DichtungsfehlerEinführung von Stressparametern für das temperaturzyklische Stressscreening:Die Belastungsparameter des Temperatur-Zyklus-Stress-Screenings umfassen hauptsächlich Folgendes: Hoch- und Tieftemperatur-Extrembereich, Verweilzeit, Temperaturvariabilität, ZykluszahlExtremalbereich hoher und niedriger Temperaturen: Je größer der Extremalbereich hoher und niedriger Temperaturen ist, desto weniger Zyklen sind erforderlich, desto niedriger sind die Kosten, aber das Produkt kann dem Grenzwert nicht standhalten und verursacht keine neuen Fehlerprinzipien, der Unterschied zwischen dem Die Ober- und Untergrenze der Temperaturänderung beträgt nicht weniger als 88 °C, der typische Änderungsbereich liegt zwischen -54 °C und 55 °C.Verweilzeit: Darüber hinaus darf die Verweilzeit nicht zu kurz sein, da es sonst zu spät ist, das zu testende Produkt zu thermischen Ausdehnungs- und Kontraktionsspannungsänderungen zu führen, da die Verweilzeit verschiedener Produkte unterschiedlich ist kann sich auf die entsprechenden Spezifikationsanforderungen beziehen.Anzahl der Zyklen: Die Anzahl der Zyklen des Temperatur-Zyklus-Stress-Screenings wird ebenfalls unter Berücksichtigung der Produkteigenschaften, der Komplexität, der Ober- und Untergrenzen der Temperatur und der Screening-Rate bestimmt. Die Screening-Nummer sollte nicht überschritten werden, da dies sonst zu Schäden führt Das Produkt wird unnötig geschädigt und die Screening-Rate kann nicht verbessert werden. Die Anzahl der Temperaturzyklen reicht von 1 bis 10 Zyklen [normales Screening, primäres Screening] bis 20 bis 60 Zyklen [präzises Screening, sekundäres Screening]. Zur Beseitigung der wahrscheinlichsten Verarbeitungsfehler können etwa 6 bis 10 Zyklen effektiv entfernt werden , zusätzlich zur Wirksamkeit des Temperaturzyklus, hängt hauptsächlich von der Temperaturschwankung der Produktoberfläche ab und nicht von der Temperaturschwankung innerhalb der Testbox.Es gibt sieben Haupteinflussparameter des Temperaturzyklus:(1) Temperaturbereich(2) Anzahl der Zyklen(3) Temperaturrate von Chang(4) Verweilzeit(5) Luftströmungsgeschwindigkeiten(6) Gleichmäßigkeit der Spannung(7) Funktionstest oder nicht (Produktbetriebszustand)
    Mehr lesen
  • AEC-Q100 – Fehlermechanismus basierend auf der Stresstest-Zertifizierung für integrierte Schaltkreise AEC-Q100 – Fehlermechanismus basierend auf der Stresstest-Zertifizierung für integrierte Schaltkreise
    Oct 12, 2024
    AEC-Q100 – Fehlermechanismus basierend auf der Stresstest-Zertifizierung für integrierte SchaltkreiseMit dem Fortschritt der Automobilelektroniktechnologie gibt es in heutigen Autos viele komplizierte Datenmanagement-Steuerungssysteme, und durch viele unabhängige Schaltkreise zur Übertragung der erforderlichen Signale zwischen den einzelnen Modulen gleicht das System im Inneren des Autos einer „Master-Slave-Architektur“ von Das Computernetzwerk, das Hauptsteuergerät und jedes Peripheriemodul. Die elektronischen Teile der Automobilindustrie sind in drei Kategorien unterteilt. Einschließlich drei Kategorien von ICs, diskreten Halbleitern und passiven Komponenten, um sicherzustellen, dass diese Automobilelektronikkomponenten den höchsten Standards der Automobilindustrie entsprechen, die von der American Automotive Electronics Association (AEC, The Automotive Electronics Council) eine Reihe von Standards [AEC-Q100] entwickelt für aktive Teile [Mikrocontroller und integrierte Schaltkreise...] und [[AEC-Q200] entwickelt für passive Komponenten, was die Produktqualität und Zuverlässigkeit angibt, die für passive Teile erreicht werden müssen. Aec-q100 ist der formulierte Fahrzeugzuverlässigkeitsteststandard von der AEC-Organisation, die für 3C- und IC-Hersteller einen wichtigen Einstieg in das internationale Automobilfabrikmodul und auch eine wichtige Technologie zur Verbesserung der Zuverlässigkeitsqualität von taiwanesischen ICs darstellt. Darüber hinaus hat die internationale Automobilfabrik den Anquan-Standard (ISO) erfüllt -26262). AEC-Q100 ist die Grundvoraussetzung, um diesen Standard zu erfüllen.Liste der Kfz-Elektronikteile, die zum Bestehen von AECQ-100 erforderlich sind:Automobil-Einwegspeicher, Stromversorgungs-Abwärtsregler, Automobil-Fotokoppler, dreiachsiger Beschleunigungssensor, Video-Jema-Gerät, Gleichrichter, Umgebungslichtsensor, nichtflüchtiger ferroelektrischer Speicher, Energieverwaltungs-IC, eingebetteter Flash-Speicher, DC/DC-Regler, Fahrzeug Messgerät-Netzwerkkommunikationsgerät, LCD-Treiber-IC, Differenzialverstärker mit Einzelstromversorgung, kapazitiver Näherungsschalter Aus, LED-Treiber mit hoher Helligkeit, asynchroner Umschalter, 600-V-IC, GPS-IC, ADAS Advanced Driver Assistance System Chip, GNSS-Empfänger, GNSS-Frontend-Verstärker. .. Lasst uns warten.AEC-Q100-Kategorien und Tests:Beschreibung: AEC-Q100-Spezifikation, 7 Hauptkategorien, insgesamt 41 TestsGruppe A – BESCHLEUNIGTE UMGEBUNGSSTRESSTESTS besteht aus 6 Tests: PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSLGruppe B – BESCHLEUNIGTE LEBENSDAUER-SIMULATIONSTESTS besteht aus drei Tests: HTOL, ELFR und EDRDie Integritätstests für die Paketmontage bestehen aus 6 Tests: WBS, WBP, SD, PD, SBS, LIGruppe D – Der Test zur Zuverlässigkeit der Herstellung von Werkzeugen besteht aus 5 Tests: EM, TDDB, HCI, NBTI, SMDie Gruppe ELEKTRISCHE VERIFIZIERUNGSTESTS besteht aus 11 Tests, darunter TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC und SERCluster-F-Defekt-SCREENING-TESTS: 11 Tests, darunter: PAT, SBADie CAVITY PACKAGE INTEGRITY TESTS bestehen aus 8 Tests, darunter: MS, VFV, CA, GFL, DROP, LT, DS, IWVKurzbeschreibung der Testgegenstände:Klimaanlage: SchnellkochtopfCA: konstante BeschleunigungCDM: Modus für elektrostatisch geladene GeräteCHAR: Gibt die Funktionsbeschreibung anDROP: Das Paket fälltDS: Chip-Shear-TestED: Elektrische VerteilungEDR: störungsfreie Speicherhaltbarkeit, Datenaufbewahrung, NutzungsdauerELFR: Frühzeitige MisserfolgsrateEM: ElektromigrationEMV: Elektromagnetische VerträglichkeitFG: FehlerebeneGFL: Grob-/Feinluft-LeckagetestGL: Gate-Leckage durch thermoelektrischen EffektHBM: gibt den menschlichen Modus der elektrostatischen Entladung anHTSL: Lagerfähigkeit bei hohen TemperaturenHTOL: Lebensdauer bei hohen TemperaturenHCL: Hot-Carrier-InjektionseffektIWV: Interner hygroskopischer TestLI: Pin-IntegritätLT: Drehmomenttest der AbdeckplatteLU: RasteffektMM: gibt den mechanischen Modus der elektrostatischen Entladung anMS: Mechanischer SchockNBTI: Instabilität der Rich-Bias-TemperaturPAT: ProzessdurchschnittstestPC: VorverarbeitungPD: physische GrößePTC: LeistungstemperaturzyklusSBA: Statistische ErtragsanalyseSBS: ZinnkugelscherenSC: KurzschlussfunktionSD: SchweißbarkeitSER: Soft-Error-RateSM: StressmigrationTC: TemperaturzyklusTDDB: Zeit bis zum dielektrischen DurchschlagTEST: Funktionsparameter vor und nach StresstestTH: Feuchtigkeit und Hitze ohne VoreingenommenheitTHB, HAST: Temperatur-, Feuchtigkeits- oder hochbeschleunigte Stresstests mit angewandter VorspannungUHST: Belastungstest mit hoher Beschleunigung ohne VoreingenommenheitVFV: zufällige VibrationWBS: SchweißdrahtschneidenWBP: SchweißdrahtspannungEndbearbeitung der Temperatur- und Feuchtigkeitstestbedingungen:THB (Temperatur und Luftfeuchtigkeit mit angelegter Vorspannung, gemäß JESD22 A101): 85℃/85 % relative Luftfeuchtigkeit/1000 h/VorspannungHAST (High Accelerated Stress Test gemäß JESD22 A110): 130℃/85%R.H./96h/Bias, 110℃/85%R.H./264h/BiasWechselstrom-Schnellkochtopf, gemäß JEDS22-A102: 121 ℃/100 % r.F./96 StdUHST-Hochbeschleunigungs-Stresstest ohne Vorspannung, gemäß JEDS22-A118, Ausrüstung: HAST-S: 110℃/85%R.H./264hTH keine vorgespannte feuchte Wärme, gemäß JEDS22-A101, Ausrüstung: THS): 85℃/85%R.H./1000hTC (Temperaturzyklus, nach JEDS22-A104, Ausstattung: TSK, TC) :Stufe 0: -50℃←→150℃/2000 ZyklenStufe 1: -50℃←→150℃/1000 ZyklenStufe 2: -50℃←→150℃/500 ZyklenStufe 3: -50℃←→125℃/500 ZyklenStufe 4: -10℃←→105℃/500 ZyklenPTC (Leistungstemperaturzyklus, gemäß JEDS22-A105, Ausrüstung: TSK):Stufe 0: -40℃←→150℃/1000 ZyklenStufe 1: -65℃←→125℃/1000 ZyklenStufe 2 bis 4: -65℃←→105℃/500 ZyklenHTSL (Lagerbeständigkeit bei hohen Temperaturen, JEDS22-A103, Gerät: OFEN):Kunststoffverpackungsteile: Güteklasse 0:150 ℃/2000hNote 1:150 ℃/1000hKlasse 2 bis 4: 125 ℃/1000 h oder 150 ℃/5000 hKeramische Verpackungsteile: 200℃/72hHTOL (Lebensdauer bei hohen Temperaturen, JEDS22-A108, Ausrüstung: OFEN):Grad 0:150 ℃/1000hKlasse 1:150℃/408h oder 125℃/1000hKlasse 2: 125℃/408h oder 105℃/1000hKlasse 3: 105℃/408h oder 85℃/1000hKlasse 4:90℃/408h oder 70℃/1000h ELFR (Early Life Failure Rate, AEC-Q100-008) : Geräte, die diesen Stresstest bestehen, können für andere Stresstests verwendet werden, allgemeine Daten können verwendet werden und Tests vor und nach ELFR werden unter milden und hohen Temperaturbedingungen durchgeführt.
    Mehr lesen
  • VMR-Plattentemperaturzyklus-Transientenbruchtest VMR-Plattentemperaturzyklus-Transientenbruchtest
    Oct 11, 2024
    VMR-Plattentemperaturzyklus-Transientenbruchtest Der Temperaturzyklustest ist eine der am häufigsten verwendeten Methoden zur Zuverlässigkeits- und Lebensdauerprüfung bleifreier Schweißmaterialien und SMD-Teile. Es bewertet die Klebeteile und Lötverbindungen auf der Oberfläche von SMD und verursacht plastische Verformung und mechanische Ermüdung von Lötverbindungsmaterialien unter dem Ermüdungseffekt von Kalt- und Heißtemperaturzyklen mit kontrollierter Temperaturschwankung, um die potenziellen Gefahren und Fehlerfaktoren zu verstehen von Lötstellen und SMD. Das Daisy-Chain-Diagramm wird zwischen den Teilen und den Lötstellen angeschlossen. Der Testprozess erkennt das Ein-Aus und Ein-Aus zwischen den Leitungen, Teilen und Lötstellen durch das Hochgeschwindigkeits-Momentanbruch-Messsystem, das die Anforderungen an den Zuverlässigkeitstest elektrischer Verbindungen erfüllt, um zu bewerten, ob die Lötstellen, Zinnkugeln und Teile fallen aus. Dieser Test ist nicht wirklich simuliert. Sein Zweck besteht darin, starke Belastungen auszuüben und den Alterungsfaktor auf das zu prüfende Objekt zu beschleunigen, um zu bestätigen, ob das Produkt korrekt entworfen oder hergestellt wurde, und um dann die thermische Ermüdungslebensdauer der Lötverbindungen der Komponenten zu bewerten. Der Zuverlässigkeitstest der elektrischen Hochgeschwindigkeitsverbindung mit sofortiger Unterbrechung ist zu einem wichtigen Glied geworden, um den normalen Betrieb des elektronischen Systems sicherzustellen und den Ausfall der elektrischen Verbindung zu vermeiden, der durch den Ausfall des unausgereiften Systems verursacht wird. Die Widerstandsänderungen über einen kurzen Zeitraum wurden bei beschleunigten Temperaturwechseln und Vibrationstests beobachtet. Zweck: 1. Stellen Sie sicher, dass die entworfenen, hergestellten und montierten Produkte vorgegebene Anforderungen erfüllen 2. Entspannung der Kriechspannung der Lötstelle und SMD-Bruchversagen aufgrund unterschiedlicher Wärmeausdehnung 3. Die maximale Testtemperatur des Temperaturzyklus sollte 25 °C niedriger sein als die Tg-Temperatur des PCB-Materials, um mehr als einen Schadensmechanismus des Ersatztestprodukts zu vermeiden 4. Eine Temperaturschwankung von 20℃/min ist ein Temperaturzyklus, und eine Temperaturschwankung über 20℃/min ist ein Temperaturschock 5. Das dynamische Messintervall der Schweißverbindung überschreitet nicht 1 Minute 6. Die Verweilzeit bei hoher und niedriger Temperatur zur Fehlerbestimmung muss in 5 Hüben gemessen werden Anforderungen: 1. Die Gesamttemperaturzeit des Testprodukts liegt im Bereich der Nennmaximaltemperatur und der Minimaltemperatur, und die Länge der Verweilzeit ist für den beschleunigten Test sehr wichtig, da die Verweilzeit während des beschleunigten Tests nicht ausreicht , wodurch der Kriechprozess unvollständig wird 2. Die Wohnraumtemperatur muss höher als die Tmax-Temperatur und niedriger als die Tmin-Temperatur sein Siehe Liste der Spezifikationen: IPC-9701, IPC650-2.6.26, IPC-SM-785, IPCD-279, J-STD-001, J-STD-002, J-STD-003, JESD22-A104, JESD22-B111, JESD22-B113, JESD22-B117, SJR-01
    Mehr lesen

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns