Double 85 Constant Temperature And Humidity Reliability Environmental Test (THB)
First, high temperature and humidity test
WHTOL (Wet High Temperature Operating Life) is a common environmental stress acceleration test, usually 85℃ and 85% relative humidity, which is generally carried out in accordance with the standard IEC 60068-2-67-2019. The test conditions are shown in the chart.
Second, the test principle
"Double 85 test" is one of the reliability environmental tests, mainly used for constant temperature and humidity box, that is, the temperature of the box is set to 85℃, the relative humidity is set to 85%RH conditions, to accelerate the aging of the test product. Although the test process is simple, the test is an important method to evaluate many characteristics of the test product, so it has become an indispensable reliability environmental test condition in various industries.
After aging the product under the condition of 85℃/85%RH, compare the performance changes of the product before and after aging, such as the photoelectric performance parameters of the lamp, the mechanical properties of the material, yellow index, etc., the smaller the difference, the better, so as to test the heat and moisture resistance of the product.
The product may have thermal failure when working in a continuous high temperature environment, and some moisture sensitive devices will fail in a high humidity environment. The dual 85 test can test the thermal stress generated by the product under high humidity and its ability to resist long-term moisture penetration. For example, the frequent failure of various products in the humid weather period in the south is mainly due to the poor temperature and humidity resistance of the products.
3. Experimental factors
In the LED lighting industry, many manufacturers have used the double 85 test results as an important means to judge the quality of lamps. Various possible reasons why LED lamps fail the dual 85 test are:
1. Lamp power supply: poor heat resistance of shell, danger of short circuit in circuit, failure of protection mechanism, etc.
2. Lamp structure: unreasonable design of heat dissipation body, installation problems, materials are not resistant to high temperature.
3. Lamp light source: poor moisture resistance, packaging adhesive aging, high temperature resistance.
If you encounter a special use environment, such as the working environment temperature is severe, you need to test its high and low temperature resistance, the test method can refer to the high and low temperature test project.
4. Serve customers
01. Customer group
LED lighting factory, LED power plant, LED packaging factory
02. Means of detection
Constant temperature and humidity test chamber
03. Reference standards
Constant temperature and humidity tests for electrical and electronic products -- Environmental testing -- Part 2: Test methods -- Test Cab: Constant temperature and humidity test GB/T 2423.3-2006.
04. Service content
4.1 Refer to the standard, conduct double 85 test on the product, and provide the third party's test results report.
4.2 Provide the analysis and improvement plan of the product through the double 85 test.
Reliability Test
AEC-Q102 Test Certification Fixed Damp Heat with Humidity Cycling (FMG), LED lamp reliability test method (GB/T 33721-2017), Component screening Ammonia test CAF test, Flame retardant grade Cyclic corrosion test (CCT), Mechanical shock test, High pressure cooker test (PCT), Highly Accelerated Stress Testing (HAST), High and low temperature and humidity test (THB), Hydrogen sulfide test (H2S), Liquid tank thermal shock test (TMSK), Component humidity sensitive grade test (MSL), Screening for high reliability use Hot flash test + acoustic sweep screening for high reliability use (MSL+SAT), LED luminaires reliability test scheme, Vibration test (VVF), Temperature cycle/thermal shock test (TC/TS), LED red Ink test UV aging test, LED light source anti-vulcanization test, Double 85 constant temperature and humidity reliability environmental test (THB), Salt spray test check.
Tablet-ZuverlässigkeitstestEin Tablet-Computer, auch Tablet-Personalcomputer (Tablet-PC) genannt, ist ein kleiner, tragbarer Personalcomputer, dessen grundlegendes Eingabegerät ein Touchscreen ist. Es handelt sich um ein elektronisches Produkt mit hoher Mobilität, das überall im Leben zu sehen ist (z. B. in Wartestationen, Zügen, Hochgeschwindigkeitszügen, Cafés, Restaurants, Besprechungsräumen, Vororten usw.). Menschen tragen nur einen einfachen Mantelschutz oder gar keinen. Um die Verwendung zu erleichtern, ist das Design verkleinert, so dass es direkt in die Tasche oder Handtasche oder den Rucksack gesteckt werden kann, aber auch der Tablet-Computer wird beim Bewegen viele Erfahrungen machen physikalische Umweltveränderungen (wie Temperatur, Feuchtigkeit, Vibration, Stöße, Extrusion usw.). Usw.) und natürliche Schäden (z. B. ultraviolettes Licht, Sonnenlicht, Staub, Salznebel, Wassertropfen usw.) Es kann auch zu künstlichen unbeabsichtigten Verletzungen oder abnormalem Betrieb und Fehlbedienung kommen und sogar zu Ausfällen und Schäden führen (z. B.: Haushaltschemikalien, Handschwitzen, Stürze, zu starkes Einsetzen und Entfernen des Terminals, Taschenreibung, Kristallnägel ... Diese verkürzen die Lebensdauer des Tablet-Computers. Um die Zuverlässigkeit des Produkts zu gewährleisten und die Lebensdauer zu verbessern, müssen wir tragen Führen Sie eine Reihe von Umweltzuverlässigkeitstestprojekten auf dem Tablet-Computer durch. Die folgenden relevanten Tests dienen als Referenz.Beschreibung des Umwelttestprojekts:Simulieren Sie verschiedene raue Umgebungen und Zuverlässigkeitsbewertungen, die von Tablet-Computern verwendet werden, um zu testen, ob ihre Leistung den Anforderungen entspricht. Es umfasst hauptsächlich den Betrieb bei hohen und niedrigen Temperaturen sowie die Lagerung bei hohen und niedrigen Temperaturen, Temperatur und Kondensation, Temperaturzyklus und -schock, Nass- und Wärmekombinationstests, Ultraviolett-, Sonnenlicht-, Tropf-, Staub-, Salzsprühnebeltests und andere Tests.Betriebstemperaturbereich: 0℃ ~ 35℃/5 % ~ 95 % relative LuftfeuchtigkeitLagertemperaturbereich: -10℃ ~ 50℃/10 % ~ 90 % relative LuftfeuchtigkeitBetriebstest bei niedrigen Temperaturen: -10℃/2h/LeistungsbetriebHochtemperaturtest im Betrieb: 40℃/8h/alles läuftLagerungstest bei niedriger Temperatur: -20℃/96h/AbschaltungHochtemperaturtest bei Lagerung: 60℃/96h/AbschaltungHochtemperaturtest der Fahrzeuglagerung: 85℃/96h/AbschaltungTemperaturschock: -40℃(30min)←→80℃(30min)/10ZyklenNasshitzetest: 40℃/95 % relative Luftfeuchtigkeit/48 Stunden/StandbybetriebHeiß-Feucht-Zyklustest: 40℃/95%R.H./1h→Rampe:1℃/min→-10℃/1h, 20 Zyklen, Standby-ModusNasshitzetest: 40℃/95 % relative Luftfeuchtigkeit/48 Stunden/StandbybetriebHeiß-Feucht-Zyklustest: 40℃/95%R.H./1h→Rampe:1℃/min→-10℃/1h, 20 Zyklen, Standby-ModusWitterungsbeständigkeitstest:Simulation der härtesten natürlichen Bedingungen, Solarthermie-Effekttest, jeder Zyklus von 24 Stunden, 8 Stunden Dauerbelichtung, 16 Stunden Dunkelheit, jeder Zyklus Strahlungsmenge von 8,96 kWh/m2, insgesamt 10 Zyklen.Salzsprühtest:5 %ige Natriumchloridlösung/Wassertemperatur 35 °C/PH 6,5–7,2/24 Std./ Abschalten → Gehäuse mit reinem Wasser abwischen → 55 °C/0,5 Std. → Funktionstest: nach 2 Stunden, nach 40/80 % r.F./168 Std.Tropftest: Gemäß IEC60529 kann im Einklang mit der Wasserdichtigkeitsklasse IPX2 verhindert werden, dass Wassertropfen, die in einem Winkel von weniger als 15 Grad fallen, in den Tablet-Computer eindringen und Schäden verursachen. Testbedingungen: Wasserdurchflussrate 3 mm/min, 2,5 min an jeder Position, Kontrollpunkt: nach dem Test, 24 Stunden später, Standby für 1 Woche.Staubtest:Laut IEC60529 kann gemäß der IP5X-Staubklasse das Eindringen von Staub nicht vollständig verhindert werden, hat aber keinen Einfluss auf das Gerät, sollte die Aktion und Anquan sein, zusätzlich zu Tablet-Computern sind derzeit viele persönliche mobile tragbare 3C-Produkte häufig verwendete Staubstandards , wie zum Beispiel: Mobiltelefone, Digitalkameras, MP3, MP4 ... Warten wir.Bedingungen:Staubprobe 110 mm/3 ~ 8 Stunden/Test für dynamischen BetriebNach dem Test wird mithilfe eines Mikroskops festgestellt, ob Staubpartikel in den Innenraum des Tablets gelangen.Chemischer Färbetest:Bestätigen Sie die mit dem Tablet verbundenen externen Komponenten, bestätigen Sie die chemische Beständigkeit von Haushaltschemikalien, Chemikalien: Sonnenschutzmittel, Lippenstift, Handcreme, Mückenschutzmittel, Speiseöl (Salatöl, Sonnenblumenöl, Olivenöl usw.), die Testzeit 24 Stunden beträgt, prüfen Sie Farbe, Glanz, Oberflächenglätte usw. und prüfen Sie, ob Blasen oder Risse vorhanden sind.Mechanischer Test:Testen Sie die Festigkeit der mechanischen Struktur des Tablet-Computers und die Verschleißfestigkeit der Schlüsselkomponenten. Beinhaltet hauptsächlich Vibrationstest, Falltest, Schlagtest, Steckertest und Verschleißtest usw.Herbsttest: Die Höhe beträgt 130 cm, freier Fall auf der glatten Bodenoberfläche, jede Seite fiel 7 Mal, 2 Seiten insgesamt 14 Mal, Tablet-Computer im Standby-Zustand, bei jedem Sturz wird die Funktion des Testprodukts überprüft.Wiederholter Falltest: Die Höhe beträgt 30 cm, der freie Fall erfolgt auf einer glatten, dichten Oberfläche mit einer Dicke von 2 cm, jede Seite fällt 100 Mal, jedes Intervall beträgt 2 Sekunden, 7 Seiten insgesamt 700 Mal, alle 20 Mal, überprüfen Sie die Funktion des experimentellen Produkts, Tablet-Computer ist im Zustand der Macht.Zufälliger Vibrationstest: Frequenz 30 ~ 100 Hz, 2G, axial: drei axial. Zeit: 1 Stunde in jede Richtung, insgesamt drei Stunden ist das Tablet im Standby-Modus.Test der Bildschirmschlagfestigkeit: Eine Kupferkugel von 11 φ/5,5 g fiel auf die Mittelfläche eines 1 m großen Objekts in 1,8 m Höhe und eine 3 ψ/9 g schwere Edelstahlkugel fiel in 30 cm HöheHaltbarkeit des Drehbuchschreibens: mehr als 100.000 Wörter (Breite R0,8 mm, Druck 250 g)Haltbarkeit der Bildschirmberührung: 1 Million, 10 Millionen, 160 Millionen, 200 Millionen Mal oder mehr (Breite R8 mm, Härte 60°, Druck 250 g, 2 Mal pro Sekunde)Bildschirm-Flachpresstest: Der Durchmesser des Gummiblocks beträgt 8 mm, die Druckgeschwindigkeit beträgt 1,2 mm/min, die vertikale Richtung beträgt 5 kg. Drücken Sie dreimal flach auf das Fenster, jeweils 5 Sekunden lang. Der Bildschirm sollte normal angezeigt werden.Flachpresstest für die Vorderseite des Bildschirms: Die gesamte Kontaktfläche, die Richtung der vertikalen 25-kg-Kraft, flach auf jede Seite des Tablet-Computers drücken, 10 Sekunden lang, flach drücken, dreimal, es sollte keine Unregelmäßigkeiten geben.Test zum Anschließen und Entfernen des Kopfhörers: Setzen Sie den Ohrhörer senkrecht in das Ohrhörerloch ein und ziehen Sie ihn dann senkrecht heraus. Wiederholen Sie dies mehr als 5000 MalI/O-Plug-and-Pull-Test: Das Tablet befindet sich im Standby-Zustand und die Steckverbindung wird insgesamt mehr als 5000 Mal abgezogenTaschenreibungstest: Simulieren Sie verschiedene Materialien in einer Tasche oder einem Rucksack. Das Tablet wird 2.000 Mal wiederholt in der Tasche gerieben (im Reibungstest werden auch einige gemischte Staubpartikel hinzugefügt, darunter Staubpartikel, Yan-Graspartikel, Flusen und Papierpartikel für den Mischtest).Bildschirmhärtetest: Härte größer als Klasse 7 (ASTM D 3363, JIS 5400)Bildschirm-Aufpralltest: Schlagen Sie mit einer Wucht von mehr als 5㎏ auf die am stärksten gefährdeten Seiten und die Mitte des Paneels
Konzentrator-SolarzelleEine konzentrierende Solarzelle ist eine Kombination aus [Konzentrator-Photovoltaik]+[Fresnel-Lenes]+[Sun Tracker]. Der Wirkungsgrad der Solarenergieumwandlung kann 31 % bis 40,7 % erreichen, obwohl der Umwandlungswirkungsgrad hoch ist, wurde er jedoch aufgrund der langen Sonnenzeit in der Vergangenheit in der Raumfahrtindustrie eingesetzt und kann nun zur Stromerzeugung eingesetzt werden Industrie mit Sonnenlicht-Tracker, der nicht für allgemeine Familien geeignet ist. Das Hauptmaterial konzentrierender Solarzellen ist Galliumarsenid (GaAs), also die drei Materialien der fünf Gruppen (III-V). Allgemeine Siliziumkristallmaterialien können nur die Energie von 400 bis 1.100 nm Wellenlänge im Sonnenspektrum absorbieren, und der Konzentrator unterscheidet sich von der Siliziumwafer-Solartechnologie, da der Halbleiter mit mehreren Verbindungsstellen einen größeren Bereich der Sonnenspektrumenergie absorbieren kann Die aktuelle Entwicklung von InGaP/GaAs/Ge-Konzentratorsolarzellen mit drei Übergängen kann die Umwandlungseffizienz erheblich verbessern. Die konzentrierende Solarzelle mit drei Übergängen kann Energie von 300 bis 1900 nm Wellenlänge absorbieren, was ihre Umwandlungseffizienz erheblich verbessern kann, und die Wärmebeständigkeit konzentrierender Solarzellen ist höher als die allgemeiner Wafer-Solarzellen.
WärmeleitungszoneWärmeleitfähigkeitEs handelt sich um die Wärmeleitfähigkeit einer Substanz, die innerhalb derselben Substanz von einer hohen Temperatur zu einer niedrigen Temperatur übergeht. Auch bekannt als: Wärmeleitfähigkeit, Wärmeleitfähigkeit, Wärmeleitfähigkeit, Wärmeübergangskoeffizient, Wärmeübertragung, Wärmeleitfähigkeit, Wärmeleitfähigkeit, Wärmeleitfähigkeit.Wärmeleitfähigkeitsformelk = (Q/t) *L/(A*T) k: Wärmeleitfähigkeit, Q: Wärme, t: Zeit, L: Länge, A: Fläche, T: Temperaturdifferenz in SI-Einheiten, die Einheit der Wärmeleitfähigkeit ist W/(m*K), in imperialen Einheiten, ist Btu · ft/(h · ft2 · °F)WärmeübergangskoeffizientIn der Thermodynamik, im Maschinenbau und in der Chemietechnik wird die Wärmeleitfähigkeit zur Berechnung der Wärmeleitung verwendet, hauptsächlich der Wärmeleitung der Konvektion oder der Phasenumwandlung zwischen Flüssigkeit und Feststoff, die als Wärme durch die Flächeneinheit pro Zeiteinheit definiert ist Die Einheit der Temperaturdifferenz wird als Wärmeleitfähigkeitskoeffizient des Stoffes bezeichnet. Wenn die Dicke der Masse L ist, muss der Messwert mit L multipliziert werden. Der resultierende Wert ist der Wärmeleitfähigkeitskoeffizient, der normalerweise als k bezeichnet wird.Einheitenumrechnung des Wärmeleitungskoeffizienten1 (CAL) = 4,186 (j), 1 (CAL/s) = 4,186 (j/s) = 4,186 (W).Die Auswirkungen hoher Temperaturen auf elektronische Produkte:Der Temperaturanstieg führt zu einer Verringerung des Widerstandswerts des Widerstands, verkürzt aber auch die Lebensdauer des Kondensators. Darüber hinaus führt die hohe Temperatur dazu, dass der Transformator die Leistung der zugehörigen Isoliermaterialien verringert und die Temperatur ebenfalls abnimmt Ein hoher Wert führt auch dazu, dass sich die Struktur der Lötverbindungslegierung auf der Leiterplatte ändert: IMC wird dicker, Lötverbindungen werden spröde, Zinn-Whisker nehmen zu, die mechanische Festigkeit nimmt ab, die Sperrschichttemperatur steigt, das Stromverstärkungsverhältnis des Transistors steigt schnell an, was zu einem Anstieg des Kollektorstroms führt , die Sperrschichttemperatur steigt weiter an und schließlich kommt es zum Ausfall der Komponente.Erklärung der richtigen Begriffe:Sperrschichttemperatur: Die tatsächliche Temperatur eines Halbleiters in einem elektronischen Gerät. Im Betrieb ist sie normalerweise höher als die Gehäusetemperatur des Gehäuses, und die Temperaturdifferenz entspricht dem Wärmestrom multipliziert mit dem Wärmewiderstand. Freie Konvektion (natürliche Konvektion) : Strahlung (Strahlung) : Zwangsluft (Gaskühlung) : Zwangsflüssigkeit (Gaskühlung) : Flüssigkeitsverdunstung: Oberfläche Umgebung UmgebungAllgemeine einfache Überlegungen zum thermischen Design:1 Um Kosten und Ausfälle zu reduzieren, sollten einfache und zuverlässige Kühlmethoden wie Wärmeleitung, natürliche Konvektion und Strahlung eingesetzt werden.2 Verkürzen Sie den Wärmeübertragungsweg so weit wie möglich und vergrößern Sie die Wärmeaustauschfläche.3 Bei der Installation von Komponenten sollte der Einfluss des Strahlungswärmeaustauschs peripherer Komponenten vollständig berücksichtigt werden, und die thermisch empfindlichen Geräte sollten von der Wärmequelle ferngehalten werden oder eine Möglichkeit gefunden werden, die Schutzmaßnahmen des Hitzeschilds zu nutzen, um die Komponenten davon zu isolieren die Wärmequelle.4 Zwischen Lufteinlass und Auslass muss ein ausreichender Abstand vorhanden sein, um einen Heißluftrückfluss zu vermeiden.5 Der Temperaturunterschied zwischen der Zuluft und der Abluft sollte weniger als 14 °C betragen.6 Es ist zu beachten, dass die Richtung der Zwangsbelüftung und der natürlichen Belüftung möglichst konsistent sein sollte.7 Geräte mit großer Hitze sollten so nah wie möglich an der Oberfläche installiert werden, die die Wärme leicht ableiten kann (z. B. der Innenfläche des Metallgehäuses, der Metallbasis und der Metallhalterung usw.), und zwischen denen eine gute Kontaktwärmeleitung besteht die Oberfläche.8 Der Stromversorgungsteil der Hochleistungsröhre und der Gleichrichterbrückenstapel gehören zum Heizgerät. Am besten direkt am Gehäuse installieren, um die Wärmeableitungsfläche zu vergrößern. Beim Layout der Leiterplatte sollten mehr Kupferschichten auf der Leiterplattenoberfläche rund um den größeren Leistungstransistor belassen werden, um die Wärmeableitungskapazität der Bodenplatte zu verbessern.9 Vermeiden Sie bei freier Konvektion den Einsatz von zu dichten Kühlkörpern.10 Das thermische Design sollte berücksichtigt werden, um sicherzustellen, dass die Strombelastbarkeit des Drahtes und der Durchmesser des ausgewählten Drahtes für die Stromleitung geeignet sein müssen, ohne dass ein Temperaturanstieg und ein Druckabfall über dem zulässigen Wert liegen.11 Wenn die Wärmeverteilung gleichmäßig ist, sollte der Abstand der Komponenten gleichmäßig sein, damit der Wind gleichmäßig durch jede Wärmequelle strömt.12 Bei Verwendung von erzwungener Konvektionskühlung (Lüfter) platzieren Sie die temperaturempfindlichen Komponenten möglichst nahe am Lufteinlass.13 Der Einsatz von Kühlgeräten mit freier Konvektion soll verhindern, dass andere Teile über den Teilen mit hohem Stromverbrauch angeordnet werden. Der richtige Ansatz sollte eine ungleichmäßige horizontale Anordnung sein.14 Wenn die Wärmeverteilung nicht gleichmäßig ist, sollten die Komponenten im Bereich mit großer Wärmeentwicklung spärlich angeordnet werden, und die Komponentenanordnung im Bereich mit geringer Wärmeentwicklung sollte etwas dichter sein oder eine Umleitungsschiene hinzufügen, damit die Windenergie kann effektiv zu den wichtigsten Heizgeräten fließen.15 Das strukturelle Konstruktionsprinzip des Lufteinlasses: Versuchen Sie einerseits, seinen Widerstand gegen den Luftstrom zu minimieren, andererseits berücksichtigen Sie die Staubvermeidung und berücksichtigen Sie die Auswirkungen beider umfassend.16 Stromverbrauchskomponenten sollten so weit wie möglich voneinander entfernt sein.17 Vermeiden Sie es, temperaturempfindliche Teile zusammenzudrängen oder sie neben Teilen mit hohem Stromverbrauch oder heißen Stellen anzuordnen.18 Bei der Verwendung von Kühlgeräten mit freier Konvektion ist eine ungleichmäßige horizontale Anordnung die richtige Vorgehensweise, um die Anordnung anderer Teile oberhalb der Teile mit hohem Stromverbrauch zu vermeiden.
Temperaturzyklisches Stress-Screening (2)Einführung von Stressparametern für das temperaturzyklische Stressscreening:Die Belastungsparameter des Temperatur-Zyklus-Stress-Screenings umfassen hauptsächlich Folgendes: Hoch- und Tieftemperatur-Extremumbereich, Verweilzeit, Temperaturvariabilität, ZykluszahlExtremalbereich hoher und niedriger Temperaturen: Je größer der Extremalbereich hoher und niedriger Temperaturen ist, desto weniger Zyklen sind erforderlich, desto geringer sind die Kosten, aber das Produkt kann dem Grenzwert nicht standhalten und verursacht keine neuen Fehlerprinzipien, der Unterschied zwischen dem Die Ober- und Untergrenze der Temperaturänderung beträgt nicht weniger als 88 °C, der typische Änderungsbereich liegt zwischen -54 °C und 55 °C.Verweilzeit: Darüber hinaus darf die Verweilzeit nicht zu kurz sein, da es sonst zu spät ist, das zu testende Produkt zu thermischen Ausdehnungs- und Kontraktionsspannungsänderungen zu führen, da die Verweilzeit verschiedener Produkte unterschiedlich ist kann sich auf die entsprechenden Spezifikationsanforderungen beziehen.Anzahl der Zyklen: Die Anzahl der Zyklen des Temperatur-Zyklus-Stress-Screenings wird auch unter Berücksichtigung der Produkteigenschaften, der Komplexität, der Ober- und Untergrenzen der Temperatur und der Screening-Rate bestimmt. Die Screening-Nummer sollte nicht überschritten werden, da dies sonst zu Schäden führt Das Produkt wird unnötig geschädigt und die Screening-Rate kann nicht verbessert werden. Die Anzahl der Temperaturzyklen reicht von 1 bis 10 Zyklen [normales Screening, primäres Screening] bis zu 20 bis 60 Zyklen [präzises Screening, sekundäres Screening]. Zur Beseitigung der wahrscheinlichsten Verarbeitungsfehler können etwa 6 bis 10 Zyklen effektiv entfernt werden , zusätzlich zur Wirksamkeit des Temperaturzyklus, hängt hauptsächlich von der Temperaturschwankung der Produktoberfläche ab und nicht von der Temperaturschwankung innerhalb der Testbox.Es gibt sieben Haupteinflussparameter des Temperaturzyklus:(1) Temperaturbereich(2) Anzahl der Zyklen(3) Temperaturrate von Chang(4) Verweilzeit(5) Luftströmungsgeschwindigkeiten(6) Gleichmäßigkeit der Spannung(7) Funktionstest oder nicht (Produktbetriebszustand)Stress-Screening-Müdigkeitsklassifizierung:Die allgemeine Klassifizierung der Ermüdungsforschung kann in Ermüdung bei hohen Zyklen, Ermüdung bei niedrigen Zyklen und Ermüdungsrisswachstum unterteilt werden. Die Kurzzeitermüdung kann in thermische Ermüdung und isotherme Ermüdung unterteilt werden.Abkürzungen für Stress-Screening:ESS: Umweltstress-ScreeningFBT: FunktionsplatinentesterICA: SchaltungsanalysatorIKT: SchaltkreistesterLBS: Lastplatinen-KurzschlusstesterMTBF: mittlere Zeit zwischen AusfällenZeit der Temperaturzyklen:a.MIL-STD-2164 (GJB 1302-90): Beim Fehlerbeseitigungstest beträgt die Anzahl der Temperaturzyklen das 10- bis 12-fache und bei der störungsfreien Erkennung 10 bis 20 Mal oder 12 bis 24 Mal. Um die wahrscheinlichsten Verarbeitungsfehler zu beseitigen, sind etwa 6 bis 10 Zyklen erforderlich, um sie effektiv zu beseitigen. 1 ~ 10 Zyklen [allgemeines Screening, primäres Screening], 20 ~ 60 Zyklen [präzises Screening, sekundäres Screening].B.od-hdbk-344 (GJB/DZ34) Die anfängliche Screening-Ausrüstung und die Einheitsebene verwenden 10 bis 20 Schleifen (normalerweise ≧10), die Komponentenebene verwendet 20 bis 40 Schleifen (normalerweise ≧25).Temperaturvariabilität:a.MIL-STD-2164 (GJB1032) besagt eindeutig: [Temperaturänderungsrate des Temperaturzyklus 5℃/min]B.od-hdbk-344 (GJB/DZ34) Komponentenniveau 15 °C/min, System 5 °C/minC. Beim Temperatur-Zyklus-Stress-Screening handelt es sich im Allgemeinen nicht um eine spezifizierte Temperaturschwankung, und die häufig verwendete Gradschwankungsrate beträgt normalerweise 5 °C/min
IEC-60068-2 Kombinierter Test von Kondensation sowie Temperatur und LuftfeuchtigkeitUnterschied der IEC60068-2-Testspezifikationen für feuchte HitzeIn der IEC60068-2-Spezifikation gibt es insgesamt fünf Arten von Prüfungen bei feuchter Hitze, zusätzlich zu den üblichen Tests bei 85℃/85 % R.F., 40℃/93 % R.F. Zusätzlich zu den Festpunkt-Hochtemperatur- und Hochfeuchtigkeitstests gibt es zwei weitere spezielle Tests [IEC60068-2-30, IEC60068-2-38], diese beiden sind abwechselnde Nass- und Feuchtigkeitszyklen und kombinierte Temperatur- und Feuchtigkeitszyklen, so der Test Der Prozess verändert Temperatur und Luftfeuchtigkeit und sogar mehrere Gruppen von Programmverknüpfungen und Zyklen, die in IC-Halbleitern, Teilen, Geräten usw. angewendet werden. Um das Kondensationsphänomen im Freien zu simulieren, bewerten Sie die Fähigkeit des Materials, die Wasser- und Gasdiffusion zu verhindern und die Produktentwicklung zu beschleunigen Toleranz gegenüber Verschlechterung wurden die fünf Spezifikationen in einer Vergleichstabelle der Unterschiede in den Nass- und Hitzetestspezifikationen organisiert und die Testpunkte für den Nass- und Hitze-Kombinationszyklustest sowie die Testbedingungen und -punkte von GJB im Detail erläutert der Nass- und Hitzetest wurden ergänzt.Wechselnder feuchter Wärmezyklustest nach IEC60068-2-30Bei diesem Test wird die Testtechnik verwendet, bei der Feuchtigkeit und Temperatur abwechselnd aufrechterhalten werden, damit Feuchtigkeit in die Probe eindringt und Kondensation (Kondensation) auf der Oberfläche des zu testenden Produkts verursacht, um die Anpassungsfähigkeit der Komponente, Ausrüstung oder anderer Produkte zu bestätigen Verwendung, Transport und Lagerung unter der Kombination von hoher Luftfeuchtigkeit und zyklischen Temperatur- und Feuchtigkeitsänderungen. Diese Spezifikation ist auch für große Testproben geeignet. Wenn die Ausrüstung und der Testprozess die Leistung der Heizkomponenten für diesen Test beibehalten müssen, ist der Effekt besser als bei IEC60068-2-38. Die in diesem Test verwendete hohe Temperatur hat zwei (40 ° C, 55 ° C). 40 ° C erfüllen die meisten Hochtemperaturumgebungen der Welt, während 55 ° C alle Hochtemperaturumgebungen der Welt erfüllen. Die Testbedingungen sind auch in [Zyklus 1, Zyklus 2] unterteilt. In Bezug auf den Schweregrad sind [Zyklus 1] ist höher als [Zyklus 2].Geeignet für Nebenprodukte: Komponenten, Geräte, verschiedene Arten von zu testenden ProduktenTestumgebung: Die Kombination aus hoher Luftfeuchtigkeit und zyklischen Temperaturschwankungen führt zu Kondensation, und drei Arten von Umgebungen können getestet werden [Verwendung, Lagerung, Transport ([Verpackung ist optional)]Prüfbelastung: Beim Atmen dringt Wasserdampf einOb Strom vorhanden ist: JaNicht geeignet für: Zu leichte und zu kleine TeileTestprozess und Inspektion und Beobachtung nach dem Test: Überprüfen Sie die elektrischen Veränderungen nach Feuchtigkeit [nehmen Sie die Zwischeninspektion nicht heraus]Testbedingungen: Luftfeuchtigkeit: 95 % relative Luftfeuchtigkeit [Temperaturänderung nach Aufrechterhaltung hoher Luftfeuchtigkeit] (niedrige Temperatur 25 ± 3 ← → hohe Temperatur 40 ℃ oder 55 ℃)Steig- und Abkühlrate: Erhitzen (0,14℃/min), Abkühlen (0,08 ~ 0,16℃/min)Zyklus 1: Wo Absorption und Atmungseffekte wichtige Merkmale sind, ist die Testprobe komplexer [Luftfeuchtigkeit nicht weniger als 90 % relative Luftfeuchtigkeit]Zyklus 2: Bei weniger offensichtlichen Absorptions- und Atmungseffekten ist die Testprobe einfacher [die Luftfeuchtigkeit beträgt nicht weniger als 80 % R.H.]Vergleichstabelle der IEC60068-2-FeuchtwärmetestspezifikationsunterschiedeBei Komponentenprodukten wird eine Kombinationstestmethode verwendet, um die Bestätigung der Beständigkeit des Testmusters gegen Zersetzung unter Bedingungen hoher Temperatur, hoher Luftfeuchtigkeit und niedriger Temperatur zu beschleunigen. Diese Testmethode unterscheidet sich von den Produktfehlern, die durch Atmung [Tau, Feuchtigkeitsaufnahme] gemäß IEC60068-2-30 verursacht werden. Der Schweregrad dieses Tests ist höher als der anderer feuchter Wärmezyklustests, da es während des Tests zu mehr Temperaturänderungen und [Atmung] kommt, der Temperaturbereich des Zyklus größer ist [von 55℃ bis 65℃] und die Temperaturänderungsrate größer ist Der Temperaturzyklus ist schneller [Temperaturanstieg: 0,14 °C/min wird zu 0,38 °C/min, 0,08 °C/min wird zu 1,16 °C/min], außerdem unterscheidet er sich vom allgemeinen feuchten Wärmezyklus, dem Niedertemperaturzyklus Eine Temperatur von -10 °C wird hinzugefügt, um die Atemfrequenz zu beschleunigen und das im Spalt des Ersatzstoffs kondensierte Wasser zum Gefrieren zu bringen, was das Merkmal dieser Testspezifikation ist. Der Testprozess ermöglicht den Leistungstest und den Test der angelegten Lastleistung, kann jedoch aufgrund der Erwärmung des Nebenprodukts nach der Stromversorgung die Testbedingungen (Temperatur- und Feuchtigkeitsschwankungen, Anstiegs- und Abkühlgeschwindigkeit) nicht beeinflussen. Aufgrund der Temperatur- und Feuchtigkeitsveränderung während des Testvorgangs kann es nicht zu Kondenswassertropfen auf der Oberseite der Testkammer zum Seitenprodukt kommen.Geeignet für Nebenprodukte: Komponenten, Versiegelung von Metallkomponenten, Versiegelung von LeitungsendenTestumgebung: Kombination aus hohen Temperaturen, hoher Luftfeuchtigkeit und niedrigen TemperaturenTestbelastung: beschleunigte Atmung + gefrorenes WasserOb es eingeschaltet werden kann: Es kann an eine externe elektrische Last angeschlossen werden (es kann die Bedingungen der Prüfkammer aufgrund der Leistungserwärmung nicht beeinträchtigen)Nicht anwendbar: Kann feuchte Hitze und abwechselnde feuchte Hitze nicht ersetzen; dieser Test wird verwendet, um andere Defekte als die Atmung hervorzurufenTestprozess und Inspektion und Beobachtung nach dem Test: Überprüfen Sie die elektrischen Veränderungen nach Feuchtigkeit [unter Bedingungen hoher Luftfeuchtigkeit prüfen und nach dem Test herausnehmen]Testbedingungen: Feuchtwärmezyklus (bitte 25 - 65 + 2 ℃ / 93 + / - 3 % R.F.) bitte - Niedertemperaturzyklus (25 bitte - 65 + 2 °C / 93 + 3 % R.F. - - 10 + 2 ℃) X5Zyklus = 10 ZyklenSteig- und Abkühlrate: Erhitzen (0,38℃/min), Abkühlen (1,16℃/min)Wärme- und Feuchtigkeitszyklus (25←→65±2℃/93±3%R.H.)Niedertemperaturzyklus (25←→65±2℃/93±3%R.H. →-10±2℃)GJB150-09 Feuchte-Hitze-TestAnweisungen: Der Nass- und Hitzetest von GJB150-09 soll die Fähigkeit von Geräten bestätigen, dem Einfluss heißer und feuchter Atmosphäre standzuhalten. Er eignet sich für Geräte, die in heißen und feuchten Umgebungen gelagert und verwendet werden, für Geräte, die einer hohen Luftfeuchtigkeit ausgesetzt sind, oder für Geräte, die dies können potenzielle Probleme im Zusammenhang mit Hitze und Feuchtigkeit haben. Heiße und feuchte Standorte können das ganze Jahr über in den Tropen, saisonal in mittleren Breiten und in Geräten auftreten, die kombinierten Druck-, Temperatur- und Feuchtigkeitsschwankungen ausgesetzt sind, mit besonderem Schwerpunkt auf 60 °C / 95 % relativer Luftfeuchtigkeit. Diese hohe Temperatur und Luftfeuchtigkeit kommen in der Natur nicht vor und simulieren auch nicht den Feuchtigkeits- und Wärmeeffekt nach Sonneneinstrahlung. Sie können jedoch die Teile der Ausrüstung finden, bei denen potenzielle Probleme auftreten, die komplexe Temperatur- und Feuchtigkeitsumgebung jedoch nicht reproduzieren, bewerten Langzeiteffekt und kann die Auswirkungen der Feuchtigkeit, die mit der Umgebung mit niedriger Luftfeuchtigkeit verbunden sind, nicht reproduzieren.Relevante Ausrüstung für Kondensations-, Nassgefrier- und Nasswärme-Kombitests: Testkammer mit konstanter Temperatur und Luftfeuchtigkeit
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.