Banner
Heim

Umweltfreundliche Testkammer

Umweltfreundliche Testkammer

  • Laptop Test Conditions Laptop Test Conditions
    Oct 16, 2024
    Laptop Test Conditions Notebook computer from the early 12-inch screen evolution to the current LED backlit screen, its computing efficiency and 3D processing, will not be lost to the general desktop computer, and the weight is becoming less and less burden, the relative reliability test requirements for the entire notebook computer is becoming more and more stringent, from the early packaging to the current boot down, the traditional high temperature and high humidity to the current condensation test. From the temperature and humidity range of the general environment to the desert test as a common condition, these are the parts that need to be considered in the production of notebook computer related components and design, the test conditions of the relevant environmental tests collected so far are organized and shared with you. Keyboard tapping test: Test one: GB:1 million times Key pressure :0.3~0.8(N) Button stroke :0.3~1.5(mm) Test 2: Key pressure: 75g(±10g) Test 10 keys for 14 days, 240 times per minute, a total of about 4.83 million times, once every 1 million times Japanese manufacturers :2 to 5 million times Taiwan manufacturer 1: more than 8 million times Taiwan Manufacturer 2:10 million times Power switch and connector plug pull test: This test model simulates the lateral forces that each connector can withstand under abnormal usage. General laptop test items: USB, 1394, PS2, RJ45, Modem, VGA... Equal application force 5kg(50 times), up and down left and right pull and plug. Power switch and connector plug test: 4000 times (Power supply) Screen cover opening and closing test: Taiwanese manufacturers: open and close 20,000 times Japanese manufacturer 1: opening and closing test 85,000 times Japanese manufacturer 2: opening and closing 30,000 times System standby and recovery switch test: General note type: interval 10sec, 1000cycles Japanese manufacturer: System standby and recovery switch test 2000 times Common causes of laptop failure: ☆ Foreign objects fall on the notebook ☆ Falls off the table while in use ☆ Tuck the notebook in a handbag or trolley case ☆ Extremely high temperature or low temperature ☆ Normal use (overuse) ☆ Wrong use in tourist destinations ☆PCMCIA inserted incorrectly ☆ Place foreign objects on the keyboard Shutdown drop test: General notebook type :76 cm GB package drop: 100cm Us Army and Japanese notebook computers: The height of the computer is 90 cm from all sides, sides, corners, a total of 26 sides Platform :74 cm (packing required) Land: 90cm (packing required) TOSHIBA&BENQ 100 cm Boot drop test: Japanese :10 cm boot fall Taiwan :74 cm boot fall Laptop main board temperature shock: Slope 20℃/min Number of cycles 50cycles(no operation during impact) The U.S. military's technical standards and test conditions for laptop procurement are as follows: Impact test: Drop the computer 26 times from all sides, sides and corners at a height of 90 cm Earthquake resistance test :20Hz~1000Hz, 1000Hz~2000Hz frequency once an hour X, Y and Z axis continuous vibration Temperature test :0℃~60℃ 72 hours of aging oven Waterproof test: Spray water on the computer for 10 minutes in all directions, and the water spray rate is 1mm per minute Dust test: Spray the concentration of 60,000 mg/ per cubic meter of dust for 2 seconds (interval of 10 minutes, 10 consecutive times, time 1 hour) Meets MIL-STD-810 military specifications Waterproof test: Us Army notebook :protection class:IP54(dust & rain) Sprayed the computer with water in all directions for 10 minutes at a rate of 1mm per minute. Dust proof test: Us Army notebook: Spray a concentration of 60,000 mg/ m3 of dust for 2 seconds (10 minute intervals, 10 consecutive times, time 1 hour)  
    Mehr lesen
  • Temperature and Humidity Terms Temperature and Humidity Terms
    Oct 14, 2024
    Temperature and Humidity Terms Dew Point temperature Td, in the air water vapor content unchanged, maintain a certain pressure, so that the air cooling to reach saturation temperature called dew point temperature, referred to as dew point, the unit is expressed in ° C or ℉. It's actually the temperature at which water vapor and water are in equilibrium. The difference between the actual temperature (t) and the dew point temperature (Td) indicates how far the air is saturated. When t>Td, it means that the air is not saturated, when t=Td, it is saturated, and when t<Td, it is supersaturated. dew is the liquid water in the air that condenses on the ground. In the evening or at night, due to the radiation cooling of the ground or ground objects, the air layer close to the surface will also cool down. When the temperature drops below the dew point, that is, when the water vapor content in the air is susaturated, there will be condensation of water vapor on the surface of the ground or ground objects. If the dew point temperature is above 0 ° C at this time, tiny water droplets appear on the ground or ground objects, which are called dew. frost refers to the white ice crystals formed on the ground or objects after the air close to the ground is cooled to the frost point (meaning the dew point is below 0) under the influence of radiation cooling on the ground. fog refers to the condensation of water vapor suspended in the atmosphere near the Earth's surface, composed of small water droplets or ice crystals. When the temperature reaches the dew point temperature (or is close to the dew point), the water vapor in the air condenses to form fog. snow is solid water in the form of snowflakes that falls to the ground from mixed clouds. Precipitation consisting of a large number of white opaque ice crystals (snow crystals) and their polymers (snow masses). Snow is the natural phenomenon of water condensing and falling in the air, or falling snow; There is a limit to the amount of water vapor that can be contained in a unit volume of air under a certain pressure and a certain temperature. If the water vapor contained in the volume of air exceeds this limit, the water vapor will condense and produce precipitation, and the actual value of water vapor in the volume of air. In terms of absolute humidity. The more water vapor there is, the higher the absolute humidity of the air. Relative Humidity refers to the percentage of water vapor pressure in the air and saturated water vapor pressure at the same temperature, or the ratio of the absolute humidity of wet air to the maximum absolute humidity that can be reached at the same temperature, and can also be expressed as the ratio of the partial pressure of water vapor in wet air to the saturation pressure of water at the same temperature. Humidity: wet and dry bulb measurement The dry and wet bulb thermometer is used to detect the [relative humidity] in the air, the dry bulb temperature is the temperature measured by the general temperature sensor, and the wet bulb temperature is tied on the temperature sensor with a wet cloth, and then soaked in a small cup of water, so that the water is wrapped in the whole sensor, because the relative humidity in the air must be less than or equal to 100% (the water vapor in the air is not saturated). Therefore, the moisture of the wet bulb will be evaporated, and the heat will be taken away during evaporation, resulting in a drop in the wet bulb temperature (the dry bulb temperature is the real air temperature), which means that the greater the difference in the readings of the dry and wet bulb thermometer, the more vigorous the evaporation of water, and the smaller the relative humidity in the air, as long as the temperature of the dry and wet bulb is measured, Then compare [relative humidity table] you can know the relative humidity of the environment at that time.  
    Mehr lesen
  • Temperature Cyclic Stress Screening (2) Temperature Cyclic Stress Screening (2)
    Oct 14, 2024
    Temperature Cyclic Stress Screening (2) Introduction of stress parameters for temperature cyclic stress screening: The stress parameters of temperature cyclic stress screening mainly include the following: high and low temperature extremum range, dwell time, temperature variability, cycle number High and low temperature extremal range: the larger the range of high and low temperature extremal, the fewer cycles required, the lower the cost, but can not exceed the product can withstand the limit, do not cause new fault principle, the difference between the upper and lower limits of temperature change is not less than 88°C, the typical range of change is -54°C to 55°C. Dwell time: In addition, the dwell time can not be too short, otherwise it is too late to make the product under test produce thermal expansion and contraction stress changes, as for the dwell time, the dwell time of different products is different, you can refer to the relevant specification requirements. Number of cycles: As for the number of cycles of temperature cyclic stress screening, it is also determined by considering product characteristics, complexity, upper and lower limits of temperature and screening rate, and the screening number should not be exceeded, otherwise it will cause unnecessary harm to the product and cannot improve the screening rate. The number of temperature cycles ranges from 1 to 10 cycles [ordinary screening, primary screening] to 20 to 60 cycles [precision screening, secondary screening], for the removal of the most likely workmanship defects, about 6 to 10 cycles can be effectively removed, in addition to the effectiveness of the temperature cycle, Mainly depends on the temperature variation of the product surface, rather than the temperature variation inside the test box. There are seven main influencing parameters of temperature cycle: (1) Temperature Range (2) Number of Cycles (3) Temperature Rate of Chang (4) Dwell Time (5) Airflow Velocities (6) Uniformity of Stress (7) Function test or not (Product Operating Condition) Stress screening fatigue classification: The general classification of Fatigue research can be divided into High-cycle Fatigue, Low-cycle Fatigue and Fatigue Crack Growth. In the aspect of low cycle Fatigue, it can be subdivided into Thermal Fatigue and Isothermal Fatigue. Stress screening acronyms: ESS: Environmental stress screening FBT: Function board tester ICA: Circuit analyzer ICT: Circuit tester LBS: load board short-circuit tester MTBF: mean time between failures Time of temperature cycles: a.MIL-STD-2164(GJB 1302-90) : In the defect removal test, the number of temperature cycles is 10, 12 times, and in the trouble-free detection it is 10 ~ 20 times or 12 ~ 24 times. In order to remove the most likely workmanship defects, about 6 ~ 10 cycles are needed to effectively remove them. 1 ~ 10 cycles [general screening, primary screening], 20 ~ 60 cycles [precision screening, secondary screening]. B.od-hdbk-344 (GJB/DZ34) Initial screening equipment and unit level uses 10 to 20 loops (usually ≧10), component level uses 20 to 40 loops (usually ≧25). Temperature variability: a.MIL-STD-2164(GJB1032) clearly states: [Temperature change rate of temperature cycle 5℃/min] B.od-hdbk-344 (GJB/DZ34) Component level 15 ° C /min, system 5 ° C /min c. Temperature cyclic stress screening is generally not specified temperature variability, and its commonly used degree variation rate is usually 5°C/min
    Mehr lesen
  • VMR-Plattentemperaturzyklus-Transientenbruchtest VMR-Plattentemperaturzyklus-Transientenbruchtest
    Oct 11, 2024
    VMR-Plattentemperaturzyklus-TransientenbruchtestDer Temperaturzyklustest ist eine der am häufigsten verwendeten Methoden zur Zuverlässigkeits- und Lebensdauerprüfung bleifreier Schweißmaterialien und SMD-Teile. Es bewertet die Klebeteile und Lötverbindungen auf der Oberfläche von SMD und verursacht plastische Verformung und mechanische Ermüdung von Lötverbindungsmaterialien unter dem Ermüdungseffekt von Kalt- und Heißtemperaturzyklen mit kontrollierter Temperaturschwankung, um die potenziellen Gefahren und Fehlerfaktoren zu verstehen von Lötstellen und SMD. Das Daisy-Chain-Diagramm wird zwischen den Teilen und den Lötstellen angeschlossen. Der Testprozess erkennt das Ein-Aus und Ein-Aus zwischen den Leitungen, Teilen und Lötstellen durch das Hochgeschwindigkeits-Momentanbruch-Messsystem, das die Anforderungen an den Zuverlässigkeitstest elektrischer Verbindungen erfüllt, um zu bewerten, ob die Lötstellen, Zinnkugeln und Teile fallen aus. Dieser Test ist nicht wirklich simuliert. Sein Zweck besteht darin, starke Belastungen auszuüben und den Alterungsfaktor auf das zu prüfende Objekt zu beschleunigen, um zu bestätigen, ob das Produkt korrekt entworfen oder hergestellt wurde, und um dann die thermische Ermüdungslebensdauer der Lötverbindungen der Komponenten zu bewerten. Der Zuverlässigkeitstest der elektrischen Hochgeschwindigkeitsverbindung mit sofortiger Unterbrechung ist zu einem wichtigen Glied geworden, um den normalen Betrieb des elektronischen Systems sicherzustellen und den Ausfall der elektrischen Verbindung zu vermeiden, der durch den Ausfall des unausgereiften Systems verursacht wird. Die Widerstandsänderungen über einen kurzen Zeitraum wurden bei beschleunigten Temperaturwechseln und Vibrationstests beobachtet.Zweck:1. Stellen Sie sicher, dass die entworfenen, hergestellten und montierten Produkte vorgegebene Anforderungen erfüllen2. Entspannung der Kriechspannung der Lötstelle und SMD-Bruchversagen aufgrund unterschiedlicher Wärmeausdehnung3. Die maximale Testtemperatur des Temperaturzyklus sollte 25 °C niedriger sein als die Tg-Temperatur des PCB-Materials, um mehr als einen Schadensmechanismus des Ersatztestprodukts zu vermeiden4. Eine Temperaturschwankung von 20℃/min ist ein Temperaturzyklus, und eine Temperaturschwankung über 20℃/min ist ein Temperaturschock5. Das dynamische Messintervall der Schweißverbindung überschreitet nicht 1 Minute6. Die Verweilzeit bei hoher und niedriger Temperatur zur Fehlerbestimmung muss in 5 Hüben gemessen werdenAnforderungen:1. Die Gesamttemperaturzeit des Testprodukts liegt im Bereich der Nennmaximaltemperatur und der Minimaltemperatur, und die Länge der Verweilzeit ist für den beschleunigten Test sehr wichtig, da die Verweilzeit während des beschleunigten Tests nicht ausreicht , wodurch der Kriechprozess unvollständig wird2. Die Wohnraumtemperatur muss höher als die Tmax-Temperatur und niedriger als die Tmin-Temperatur seinSiehe Liste der Spezifikationen:IPC-9701, IPC650-2.6.26, IPC-SM-785, IPCD-279, J-STD-001, J-STD-002, J-STD-003, JESD22-A104, JESD22-B111, JESD22-B113, JESD22-B117, SJR-01
    Mehr lesen
  • Zuverlässigkeitstest für Leuchtdioden für die Kommunikation Zuverlässigkeitstest für Leuchtdioden für die Kommunikation
    Oct 09, 2024
    Zuverlässigkeitstest für Leuchtdioden für die KommunikationFeststellung des Ausfalls der Kommunikations-Leuchtdiode:Stellen Sie einen festen Strom bereit, um die optische Ausgangsleistung zu vergleichen und den Fehler zu ermitteln, wenn der Fehler größer als 10 % ist.Mechanischer Stabilitätstest:Schlagtest: 5 Takte/Achse, 1500 G, 0,5 msVibrationstest: 20 G, 20 ~ 2000 Hz, 4 Min./Zyklus, 4 Zyklen/AchseThermoschocktest für Flüssigkeiten: 100℃(15 Sek.)←→0℃(5 Sek.)/5 ZyklenLötwärmebeständigkeit: 260℃/10 Sekunden/1 MalLothaftung: 250℃/5 SekundenHaltbarkeitstest:Beschleunigter Alterungstest: 85℃/Leistung (maximale Nennleistung)/5000 Stunden, 10000 StundenHochtemperaturlagerung: maximale Nennlagertemperatur /2000 StundenLagerungstest bei niedrigen Temperaturen: maximale Nennlagertemperatur /2000 StundenTemperaturzyklustest: -40℃(30min)←85℃(30min), RAMP: 10/min, 500ZyklenFeuchtigkeitsbeständigkeitstest: 40℃/95%/56 Tage, 85℃/85%/2000 Stunden, VersiegelungszeitScreening-Test für Kommunikationsdiodenelemente:Temperatur-Screening-Test: 85 °C/Leistung (maximale Nennleistung)/96 Stunden Screening-Fehlerbestimmung: Vergleichen Sie die optische Ausgangsleistung mit dem festen Strom und ermitteln Sie den Fehler, wenn der Fehler größer als 10 % ist.Screening-Test für Kommunikationsdiodenmodule:Schritt 1: Überprüfung des Temperaturzyklus: -40℃(30min)←→85℃(30min), RAMP: 10/min, 20 Zyklen, keine StromversorgungSchritt 2: Temperatur-Screening-Test: 85 °C/Leistung (maximale Nennleistung)/96 Stunden   
    Mehr lesen
  • IEEE1513-Temperaturzyklustest und Nassgefriertest, Feuchtigkeits-Wärmetest 2 IEEE1513-Temperaturzyklustest und Nassgefriertest, Feuchtigkeits-Wärmetest 2
    Sep 29, 2024
    IEEE1513-Temperaturzyklustest und Nassgefriertest, Feuchtigkeits-Wärmetest 2Schritte:Beide Module führen gemäß ASTM E1171-99 200 Temperaturzyklen zwischen -40 °C und 60 °C oder 50 Temperaturzyklen zwischen -40 °C und 90 °C durch.Notiz:ASTM E1171-01: Testmethode für den photoelektrischen Modul bei Schleifentemperatur und LuftfeuchtigkeitDie relative Luftfeuchtigkeit muss nicht kontrolliert werden.Die Temperaturschwankung sollte 100℃/Stunde nicht überschreiten.Die Verweilzeit sollte mindestens 10 Minuten betragen und die hohe und niedrige Temperatur sollte innerhalb der Anforderung von ±5℃ liegenAnforderungen:A. Das Modul wird nach dem Zyklustest auf offensichtliche Schäden oder Verschlechterungen untersucht.B. Das Modul darf keine Risse oder Verwerfungen aufweisen und das Dichtungsmaterial darf sich nicht ablösen.C. Bei einer selektiven elektrischen Funktionsprüfung sollte die Ausgangsleistung unter gleichen Bedingungen vieler ursprünglicher Grundparameter 90 % oder mehr betragenHinzugefügt:IEEE1513-4.1.1 Modul-Repräsentant oder Empfänger-Testmuster: Wenn ein komplettes Modul oder ein Empfänger zu groß ist, um in eine bestehende Umwelttestkammer zu passen, kann das Modul-Repräsentativ oder Empfänger-Testmuster durch ein Modul oder einen Empfänger in voller Größe ersetzt werden.Diese Testmuster sollten speziell mit einem Ersatzempfänger zusammengebaut werden. Wenn sie eine Reihe von Zellen enthalten, die an einen Empfänger voller Größe angeschlossen sind, sollte die Batteriereihe lang sein und mindestens zwei Bypass-Dioden enthalten, aber drei Zellen sind auf jeden Fall relativ wenige , die zusammenfasst, dass die Einbeziehung von Links mit dem Ersatzempfängerterminal mit dem vollständigen Modul identisch sein sollte.Der Ersatzempfänger muss Komponenten enthalten, die für die anderen Module repräsentativ sind, einschließlich Objektiv/Objektivgehäuse, Empfänger/Empfängergehäuse, hinteres Segment/hintere Segmentlinse, Gehäuse und Empfängeranschluss. Die Verfahren A, B und C werden getestet.Für das Testverfahren D im Freien sollten zwei Module voller Größe verwendet werden.IEEE1513-5.8 Feuchtigkeits-Gefrierzyklustest Feuchtigkeits-GefrierzyklustestEmpfängerZweck:Es soll festgestellt werden, ob das Aufnahmeteil ausreichend Korrosionsschäden standhält und ob die Fähigkeit zur Feuchtigkeitsausdehnung zur Ausdehnung der Materialmoleküle besteht. Darüber hinaus ist gefrorener Wasserdampf die Belastung für die FehlerursachenermittlungVerfahren:Die Proben werden nach dem Temperaturwechsel gemäß Tabelle 3 getestet und einem Nassgefriertest bei 85 °C und -40 °C, einer Luftfeuchtigkeit von 85 % und 20 Zyklen unterzogen. Gemäß ASTM E1171-99 muss sich das Empfangsende mit großem Volumen auf 4.1.1 beziehenAnforderungen:Der Empfangsteil muss die Anforderungen von 5.7 erfüllen. Verlassen Sie den Umgebungstank innerhalb von 2 bis 4 Stunden, und der Aufnahmeteil sollte die Anforderungen der Hochspannungsisolationsleckageprüfung erfüllen (siehe 5.4).ModulZweck:Stellen Sie fest, ob das Modul über ausreichende Kapazität verfügt, um schädlicher Korrosion oder der Vergrößerung von Materialbindungsunterschieden zu widerstehenVerfahren: Beide Module werden Nassgefriertests für 20 Zyklen, 4 oder 10 Zyklen bei 85 °C gemäß ASTM E1171-99 unterzogen.Bitte beachten Sie, dass die maximale Temperatur von 60 °C niedriger ist als der Nassgefriertestabschnitt am Empfangsende.Eine vollständige Hochspannungsisolationsprüfung (siehe 5.4) wird nach einem zwei- bis vierstündigen Zyklus abgeschlossen. Im Anschluss an die Hochspannungsisolationsprüfung wird die elektrische Leistungsprüfung gemäß 5.2 durchgeführt. In großen Modulen können auch Module absolviert werden, siehe 4.1.1.Anforderungen:A. Das Modul prüft nach dem Test auf offensichtliche Schäden oder Verschlechterungen und zeichnet diese auf.B. Das Modul darf keine Risse, Verformungen oder starke Korrosion aufweisen. Es dürfen keine Dichtungsschichten vorhanden sein.C. Das Modul muss den Hochspannungsisolationstest gemäß IEEE1513-5.4 bestehen.Bei einer selektiven elektrischen Funktionsprüfung kann die Ausgangsleistung unter gleichen Bedingungen vieler ursprünglicher Grundparameter 90 % oder mehr erreichenIEEE1513-5.10 Feuchte-Hitze-Test IEEE1513-5.10 Feuchte-Hitze-TestObjektiv: Zur Bewertung der Wirkung und Fähigkeit des Empfängerendes, einer langfristigen Feuchtigkeitsinfiltration standzuhalten.Verfahren: Der Testempfänger wird in einer Umgebungstestkammer mit 85 % ±5 % relativer Luftfeuchtigkeit und 85 °C ±2 °C getestet, wie in ASTM E1171-99 beschrieben. Dieser Test sollte in 1000 Stunden abgeschlossen sein, es können jedoch weitere 60 Stunden hinzugefügt werden, um einen Leckagetest der Hochspannungsisolation durchzuführen. Der Empfangsteil kann zum Testen verwendet werden.Anforderungen: Das Empfangsende muss die Feuchtwärme-Testkammer für 2 bis 4 Stunden verlassen, um den Leckagetest der Hochspannungsisolierung (siehe 5.4) und die Sichtprüfung (siehe 5.1) zu bestehen. Bei einer selektiven elektrischen Funktionsprüfung sollte die Ausgangsleistung unter gleichen Bedingungen vieler ursprünglicher Grundparameter 90 % oder mehr betragen.Test- und Inspektionsverfahren für IEEE1513-ModuleIEEE1513-5.1 Visuelles InspektionsverfahrenZweck: Ermittlung des aktuellen visuellen Status, damit der Empfänger vergleichen kann, ob er jeden Test besteht, und garantieren kann, dass er die Anforderungen für weitere Tests erfüllt.IEEE1513-5.2 Elektrischer LeistungstestZiel: Beschreibung der elektrischen Eigenschaften des Testmoduls und des Empfängers und Bestimmung ihrer Spitzenausgangsleistung.IEEE1513-5.3 ErdungskontinuitätstestZweck: Überprüfung der elektrischen Kontinuität zwischen allen freiliegenden leitenden Komponenten und dem Erdungsmodul.IEEE1513-5.4 Elektrischer Isolationstest (Trocken-Hi-Po)Zweck: Sicherstellen, dass die elektrische Isolierung zwischen dem Schaltkreismodul und allen externen Kontakt-leitenden Teilen ausreichend ist, um Korrosion zu verhindern und die Sicherheit der Arbeiter zu gewährleisten.IEEE1513-5.5 NassisolationswiderstandstestZweck: Überprüfung, ob Feuchtigkeit nicht in den elektronisch aktiven Teil des Empfängerendes eindringen kann, wo sie Korrosion oder Erdschluss verursachen oder Gefahren für die menschliche Sicherheit erkennen könnte.IEEE1513-5.6 WassersprühtestZiel: Der Feld-Nass-Widerstandstest (FWRT) bewertet die elektrische Isolierung von Solarzellenmodulen basierend auf den Feuchtigkeitsbetriebsbedingungen. Dieser Test simuliert starken Regen oder Tau auf der Konfiguration und Verkabelung, um sicherzustellen, dass keine Feuchtigkeit in den verwendeten Array-Schaltkreis eindringt, was die Korrosion erhöhen, Erdschlüsse verursachen und elektrische Sicherheitsrisiken für Personal oder Geräte darstellen kann.IEEE1513-5.7 Thermozyklustest (Thermozyklustest)Ziel: Feststellung, ob das Empfängerende dem Ausfall, der durch die unterschiedliche Wärmeausdehnung von Teilen und Verbindungsmaterialien verursacht wird, ordnungsgemäß standhalten kann.IEEE1513-5.8 Feuchtigkeits-GefrierzyklustestZiel: Feststellung, ob das Aufnahmeteil ausreichend beständig gegen Korrosionsschäden ist und die Fähigkeit zur Feuchtigkeitsausdehnung besitzt, um die Materialmoleküle auszudehnen. Darüber hinaus ist gefrorener Wasserdampf die Belastung für die Fehlerursachenermittlung.IEEE1513-5.9 Robustheitstest für TerminierungenZweck: Um die Drähte und Anschlüsse sicherzustellen, wenden Sie externe Kräfte auf jedes Teil an, um sicherzustellen, dass sie stark genug sind, um normale Handhabungsverfahren aufrechtzuerhalten.IEEE1513-5.10 Feuchte-Hitze-Test (Feuchte-Hitze-Test)Ziel: Bewertung der Wirkung und Fähigkeit des Empfangsendes, einer langfristigen Feuchtigkeitsinfiltration standzuhalten. ICHEEE1513-5.11 HagelschlagtestZiel: Feststellung, ob eine Komponente, insbesondere der Kondensator, Hagel überstehen kann. IEEE1513-5.12 Bypass-Dioden-Thermotest (Bypass-Dioden-Thermotest)Ziel: Bewertung der Verfügbarkeit eines ausreichenden thermischen Designs und der Verwendung von Bypass-Dioden mit relativer Langzeitzuverlässigkeit, um die nachteiligen Auswirkungen der thermischen Verschiebungsdiffusion von Modulen zu begrenzen.IEEE1513-5.13 Hot-Spot-Ausdauertest (Hot-Spot-Ausdauertest)Ziel: Beurteilung der Fähigkeit von Modulen, periodischen Wärmeschwankungen im Laufe der Zeit standzuhalten, die häufig mit Fehlerszenarien wie stark gerissenen oder nicht übereinstimmenden Zellchips, einzelnen Ausfällen bei offenen Schaltkreisen oder ungleichmäßigen Schatten (schattierte Bereiche) einhergehen. ICHEEE1513-5.14 Außenexpositionstest (Außenexpositionstest)Zweck: Zur vorläufigen Beurteilung der Fähigkeit des Moduls, der Einwirkung von Außenumgebungen (einschließlich ultravioletter Strahlung) standzuhalten, darf die verminderte Wirksamkeit des Produkts durch Labortests nicht festgestellt werden.IEEE1513-5.15 Off-Axis-Beam-SchadenstestZweck: Sicherstellen, dass Teile des Moduls aufgrund der Modulabweichung des konzentrierten Sonnenstrahlungsstrahls zerstört werden. 
    Mehr lesen
  • IEC 60068-2 Kombinierter Kondensations-, Temperatur- und Feuchtigkeitstest IEC 60068-2 Kombinierter Kondensations-, Temperatur- und Feuchtigkeitstest
    Sep 27, 2024
    Kombinierter Kondensations-, Temperatur- und Feuchtigkeitstest nach IEC 60068-2In der IEC60068-2-Spezifikation gibt es insgesamt fünf Arten von Prüfungen bei feuchter Hitze. Zusätzlich zu den üblichen 85℃/85%R.H., 40℃/93%R.H. Bei hohen Festpunkttemperaturen und hoher Luftfeuchtigkeit gibt es zwei weitere spezielle Tests [IEC60068-2-30, IEC60068-2-38], sie sind abwechselnde Nass- und Feuchtigkeitszyklen und kombinierte Temperatur- und Feuchtigkeitszyklen, sodass der Testprozess die Temperatur ändert und Feuchtigkeit. Sogar mehrere Gruppen von Programmverknüpfungen und -zyklen, die in IC-Halbleitern, Teilen, Geräten usw. angewendet werden. Um das Kondensationsphänomen im Freien zu simulieren, die Fähigkeit des Materials zur Verhinderung von Wasser- und Gasdiffusion zu bewerten und die Toleranz des Produkts gegenüber Alterung zu beschleunigen, sind die fünf Spezifikationen organisiert In eine Vergleichstabelle der Unterschiede in den Nass- und Hitzetestspezifikationen werden die Hauptpunkte des Tests für den Nass- und Hitze-Kombinationszyklustest sowie die Testbedingungen und -punkte von GJB im Nass- und Hitzetest ausführlich erläutert ergänzt.Wechselnder feuchter Wärmezyklustest nach IEC60068-2-30Hinweis: Dieser Test verwendet die Testtechnik der Aufrechterhaltung von Feuchtigkeits- und Temperaturschwankungen, um Feuchtigkeit in die Probe eindringen zu lassen und Kondensation (Kondensation) auf der Oberfläche des Produkts zu erzeugen, um die Anpassungsfähigkeit der Komponente, Ausrüstung oder anderer Produkte bei Verwendung, Transport und zu bestätigen Lagerung unter der Kombination von hoher Luftfeuchtigkeit und Temperatur- und Feuchtigkeitszyklusänderungen. Diese Spezifikation ist auch für große Testproben geeignet. Wenn die Ausrüstung und der Testprozess die Leistung der Heizkomponenten für diesen Test beibehalten müssen, ist der Effekt besser als bei IEC60068-2-38, die in diesem Test verwendete hohe Temperatur hat zwei (40 °C, 55 °C), die 40 °C entspricht den meisten Hochtemperaturumgebungen der Welt, während 55 °C allen Hochtemperaturumgebungen der Welt entspricht. Die Testbedingungen sind auch in [Zyklus 1, Zyklus 2] unterteilt. In Bezug auf den Schweregrad [Zyklus 1] ist höher als [Zyklus 2].Geeignet für Nebenprodukte: Komponenten, Geräte, verschiedene Arten von zu testenden ProduktenTestumgebung: Die Kombination aus hoher Luftfeuchtigkeit und zyklischen Temperaturschwankungen führt zu Kondensation, und drei Arten von Umgebungen können getestet werden [Verwendung, Lagerung, Transport ([Verpackung ist optional)]Prüfbelastung: Beim Atmen dringt Wasserdampf einOb Strom vorhanden ist: JaNicht geeignet für: Zu leichte und zu kleine TeileTestprozess und Inspektion und Beobachtung nach dem Test: Überprüfen Sie die elektrischen Veränderungen nach Feuchtigkeit [nehmen Sie die Zwischeninspektion nicht heraus]Testbedingungen: Luftfeuchtigkeit: 95 % R.H. Erwärmung] nach [Feuchtigkeit beibehalten (25 + 3 ℃ niedrige Temperatur - - hohe Temperatur 40 ℃ oder 55 ℃)Steig- und Abkühlrate: Erhitzen (0,14℃/min), Abkühlen (0,08~0,16℃/min)Zyklus 1: Wo Absorption und Atmungseffekte wichtige Merkmale sind, ist die Testprobe komplexer [Luftfeuchtigkeit nicht weniger als 90 % relative Luftfeuchtigkeit]Zyklus 2: Bei weniger offensichtlichen Absorptions- und Atmungseffekten ist die Testprobe einfacher [die Luftfeuchtigkeit beträgt nicht weniger als 80 % R.H.]IEC60068-2-30 Wechseltemperatur- und Feuchtigkeitstest (Kondensationstest)Hinweis: Für Komponententypen von Teilprodukten wird eine Kombinationstestmethode verwendet, um die Bestätigung der Toleranz des Testmusters gegenüber einer Verschlechterung unter Bedingungen hoher Temperatur, hoher Luftfeuchtigkeit und niedriger Temperatur zu beschleunigen. Diese Testmethode unterscheidet sich von den Produktfehlern, die durch Atmung [Tau, Feuchtigkeitsaufnahme] gemäß IEC60068-2-30 verursacht werden. Der Schweregrad dieses Tests ist höher als der anderer feuchter Wärmezyklustests, da es während des Tests zu mehr Temperaturänderungen und [Atmung] kommt und der Temperaturbereich des Zyklus größer ist [von 55℃ bis 65℃]. Die Temperaturschwankungsrate des Temperaturzyklus wird ebenfalls schneller [Temperaturanstieg: 0,14℃/min wird zu 0,38℃/min, 0,08℃/min wird zu 1,16℃/min]. Darüber hinaus wird, anders als beim allgemeinen feuchten Wärmezyklus, der Niedertemperaturzykluszustand von -10℃ erhöht, was die Atemfrequenz beschleunigt und dazu führt, dass das Wasser im Spalt der Ersatzvereisung kondensiert. Das Merkmal dieser Testspezifikation ist, dass der Testprozess Leistungs- und Lastleistungstests ermöglicht, jedoch die Testbedingungen (Temperatur- und Feuchtigkeitsschwankungen, Anstiegs- und Abkühlgeschwindigkeit) aufgrund der Erwärmung des Nebenprodukts nach dem Einschalten nicht beeinflussen kann Während des Testvorgangs ändern sich Temperatur und Luftfeuchtigkeit, aber die Oberseite der Testkammer kann keine Wassertropfen zum Nebenprodukt kondensieren.Geeignet für Nebenprodukte: Komponenten, Versiegelung von Metallkomponenten, Versiegelung von LeitungsendenTestumgebung: Kombination aus hohen Temperaturen, hoher Luftfeuchtigkeit und niedrigen TemperaturenTestbelastung: beschleunigte Atmung + gefrorenes WasserOb es eingeschaltet werden kann: Es kann an eine externe elektrische Last angeschlossen werden (es kann die Bedingungen der Prüfkammer aufgrund der Leistungserwärmung nicht beeinträchtigen)Nicht zutreffend: Kann feuchte Hitze und abwechselnde feuchte Hitze nicht ersetzen; dieser Test wird verwendet, um andere Defekte als die Atmung hervorzurufenTestprozess und Inspektion und Beobachtung nach dem Test: Überprüfen Sie die elektrischen Veränderungen nach Feuchtigkeit [unter Bedingungen hoher Luftfeuchtigkeit prüfen und nach dem Test herausnehmen]Testbedingungen: feuchter Temperatur- und Feuchtigkeitszyklus (25 ↔ 65 + 2 °C / 93 + 3 % r.F.) – Niedertemperaturzyklus (25 ↔ 65 + 2 ℃ / 93 + 3 % r.F. – 10 + 2 °C) X5-Zyklus = 10 ZyklenSteig- und Abkühlrate: Erhitzen (0,38 °C/Min.), Abkühlen (1,16 °C/Min.)GJB150-o9 FeuchtwärmetestBeschreibung: Der Nass- und Hitzetest von GJB150-09 soll die Fähigkeit von Geräten bestätigen, dem Einfluss heißer und feuchter Atmosphäre standzuhalten. Er eignet sich für Geräte, die in heißen und feuchten Umgebungen gelagert und verwendet werden, für Geräte, die einer Lagerung oder Verwendung bei hoher Luftfeuchtigkeit ausgesetzt sind, oder Geräte können potenzielle Probleme im Zusammenhang mit Hitze und Feuchtigkeit haben. Heiße und feuchte Standorte können das ganze Jahr über in tropischen Gebieten, saisonal in mittleren Breiten und in Geräten auftreten, die starken Druck-, Temperatur- und Feuchtigkeitsschwankungen ausgesetzt sind. In der Spezifikation wird ausdrücklich auf 60 °C / 95 % relative Luftfeuchtigkeit Wert gelegt. Diese hohe Temperatur und Luftfeuchtigkeit kommt in der Natur nicht vor und simuliert auch nicht den feuchten und thermischen Effekt nach Sonneneinstrahlung, kann aber zu potenziellen Problemen in der Ausrüstung führen. Es ist jedoch nicht möglich, komplexe Temperatur- und Feuchtigkeitsumgebungen zu reproduzieren, langfristige Auswirkungen zu bewerten und Feuchtigkeitseffekte zu reproduzieren, die mit Umgebungen mit niedriger Luftfeuchtigkeit verbunden sind. 
    Mehr lesen
  • Definition und Eigenschaften der UV-Bewitterungstestkammer Definition und Eigenschaften der UV-Bewitterungstestkammer
    Sep 07, 2024
    Definition und Eigenschaften der UV-Bewitterungstestkammer Die UV-Bewitterungsprüfkammer ist eine professionelle Ausrüstung zur Simulation und Bewertung der Beständigkeit von Materialien gegenüber ultravioletter Strahlung und entsprechenden klimatischen Bedingungen. Seine Hauptaufgabe besteht darin, die Wirkung von ultraviolettem Licht auf Materialien in der natürlichen Umgebung durch künstlich gesteuerte ultraviolette Strahlung sowie Temperatur- und Feuchtigkeitsänderungen zu simulieren, um umfassende und systematische Tests zur Haltbarkeit, Farbstabilität und physikalischen Eigenschaften von Materialien durchzuführen. In den letzten Jahren ist der Einsatz von UV-Bewitterungsprüfkammern mit der Entwicklung von Wissenschaft und Technologie und der kontinuierlichen Verbesserung der Materialleistungsanforderungen immer umfangreicher geworden und deckt Kunststoffe, Beschichtungen, Gummi, Textilien und andere Bereiche ab. Die Eigenschaften der Geräte spiegeln sich vor allem in ihrer hohen Effizienz und Genauigkeit wider. Erstens verwendet die UV-Bewitterungstestkammer eine hochintensive Ultraviolettlampe, die ein ultraviolettes Spektrum aussendet, das dem Sonnenlicht nahe kommt und die Lichtverhältnisse in der realen Umgebung genau simulieren kann. Zweitens verfügt es über ein Echtzeit-Überwachungs- und Steuerungssystem, das die Innentemperatur, Luftfeuchtigkeit und UV-Intensität präzise regulieren kann, um die Stabilität des Testprozesses und die Zuverlässigkeit der Ergebnisse sicherzustellen. Darüber hinaus ist auch das interne Material und die strukturelle Gestaltung der Prüfkammer von besonderer Bedeutung. In der Regel werden korrosionsbeständige und oxidationsbeständige Materialien verwendet, um die Lebensdauer der Geräte zu verlängern und die Genauigkeit des Tests zu verbessern. Darüber hinaus beschränkt sich der Einsatz von UV-Bewitterungsprüfkammern nicht nur auf die Alterungserkennung von Materialien, sondern kann auch die Leistung von Materialien vorhersagen und verbessern, wodurch Hersteller bei der Materialauswahl und dem Produktdesign vorausschauender und wissenschaftlicher werden. Durch den Einsatz dieser Ausrüstung werden die Qualitätsprobleme, die durch die mangelnde Witterungsbeständigkeit des Produkts verursacht werden, weitgehend reduziert und die Wettbewerbsfähigkeit des Produkts auf dem Markt verbessert. Daher kann die UV-Bewitterungsprüfkammer in der Materialforschung und -entwicklung als unverzichtbares Hilfsmittel bezeichnet werden, das Unternehmen dabei hilft, Materialeigenschaften schnell zu erkennen und zu optimieren, um den sich ändernden Anforderungen des Marktes gerecht zu werden. Kurz gesagt, die UV-Bewitterungsprüfkammer ist als fortschrittliche Prüftechnologie führend bei Fortschritt und Innovation im Bereich der Materialwissenschaften. Mit der steigenden Nachfrage nach umweltfreundlichen Materialien und langlebigen Produkten wird die Bedeutung solcher Geräte immer wichtiger. Seine wissenschaftliche, zuverlässige und effiziente Technologie wird allen Lebensbereichen dabei helfen, qualitativ hochwertigere Produkte zu entwickeln, um künftig noch unbekanntere Herausforderungen zu meistern.
    Mehr lesen

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns