Banner
Heim

Temperaturwechseltestkammer

Temperaturwechseltestkammer

  • Polarizer Test Conditions Polarizer Test Conditions
    Oct 09, 2024
    Polarizer Test Conditions Polarizer is one of the basic parts of the liquid crystal display, is a light plate that only allows a certain direction of light to pass through, in the process of making the liquid crystal plate, must be used above and below each piece, and into the staggered direction placed, mainly used for electric field and no electric field when the light source produces a phase difference and the state of light and dark, to display subtitles or patterns. Relevant test conditions: Because the molecular structure of iodine is easy to destroy under high temperature and humidity conditions, the durability of the polarizer produced by iodine dyeing technology is poor, and generally can only meet: High temperature: 80℃×500HR Hot and humid: working conditions below 60℃×90%RH×500HR However, with the expansion of the use of LCD products, the wet and hot working conditions of polarizing products are becoming more and more demanding, and there has been a demand for polarizing plate products that work at 100 ° C and 90%RH conditions, and the highest conditions at present are: High temperature: 105℃×500HR Humidity and heat: test requirements below 90℃×95%RH×500HR The durability test of polarizer includes four test methods: high temperature, wet heat, low temperature and cold and heat shock, of which the most important test is the wet and heat test. The high temperature test refers to the high temperature working conditions of the polarizer at a constant baking temperature. At present, according to the technical grade of the polarizer, it is divided into: Universal type: working temperature is 70℃×500HR; Medium durability type: the working temperature is 80℃×500HR; High durability type: the operating temperature is 90℃×500H above these three grades. Because the basic materials of the polarizing film PVA film and iodine and iodide are easily hydrolyzed materials, but also because the pressure sensitive adhesive used in the polarizing plate is also easy to deteriorate under high temperature and high humidity conditions, the most important things in the environmental test of the polarizing plate are high temperature and wet heat.    
    Mehr lesen
  • Daily maintenance tips for high and low temperature test chambers and alternating high and low temperature test chambers Daily maintenance tips for high and low temperature test chambers and alternating high and low temperature test chambers
    Oct 09, 2024
    Daily maintenance tips for high and low temperature test chambers and alternating high and low temperature test chambers 1. High and low temperature test chambers are generally relatively high, and we recommend placing them in a relatively benign temperature environment. Our experience temperature value is 8 ℃~23 ℃. For laboratories that do not have this condition, appropriate air conditioners or cooling towers must be equipped. 2. It is necessary to adhere to professional management by dedicated personnel. Units with conditions should periodically send dedicated personnel to the supplier's factory for training and learning, in order to gain more professional experience and ability in maintenance and repair Hongzhan Instrument. 3. Regularly clean the condenser every 3 months: For compressors that use air-cooled cooling, the condenser fan should be regularly inspected and the condenser should be cleaned and dusted to ensure good ventilation and heat transfer performance; For compressors that use water-cooled cooling, in addition to ensuring their inlet water pressure and temperature, it is also necessary to ensure the corresponding flow rate. Regular cleaning and descaling of the condenser interior is also necessary to obtain its continuous heat transfer performance. 4. Regularly clean the evaporator: Due to the different cleanliness levels of the test samples, a lot of small particles such as dust will accumulate on the evaporator under forced air circulation, and should be cleaned regularly. 5. Cleaning and balancing of circulating air blades and condenser fans: Similar to cleaning evaporators, due to the different working environments of the test chamber, many small particles such as dust may accumulate on the circulating air blades and condenser fans, and should be cleaned regularly. 6. Cleaning of waterway and humidifier: If the waterway is not smooth and the humidifier scales, it is easy for the humidifier to dry and burn, which may damage the humidifier. Therefore, it is necessary to regularly clean the waterway and humidifier. 7. After each experiment, set the temperature near the ambient temperature, work for about 30 minutes, then cut off the power and clean the inner wall of the workshop. If the equipment needs to be relocated, it is best to do so under the guidance of technical personnel from Hongzhan Company to avoid unnecessary damage or damage to the equipment. When the product is not in use for a long period of time, it should be powered on regularly every half month, and the power on time should not be less than 1 hour. 10. Maintenance principle: Due to the fact that high and low temperature test chambers are mainly composed of electrical, refrigeration, and mechanical systems, once there is a problem with the equipment, a comprehensive inspection and analysis of the entire equipment system should be carried out. Generally speaking, the process of analysis and judgment can start with "external" and then "internal", that is, after excluding external factors, the equipment can be systematically decomposed based on the fault phenomenon. Then, the system can be comprehensively analyzed and judged. Alternatively, the reverse reasoning method can be used to find the cause of the fault: first, check whether there is a problem with the electrical system according to the electrical wiring diagram, and finally check whether there is a problem with the refrigeration system. Before understanding the cause of the fault, it is not advisable to disassemble or replace components blindly to avoid unnecessary trouble.
    Mehr lesen
  • Reliability Test for Light-emitting Diodes for Communication Reliability Test for Light-emitting Diodes for Communication
    Oct 09, 2024
    Reliability Test for Light-emitting Diodes for Communication Communication light-emitting diode failure determination: Provide a fixed current to compare the optical output power, and determine failure if the error is greater than 10% Mechanical stability test: Impact test: 5tims/axis, 1500G, 0.5ms Vibration test: 20G, 20 ~ 2000Hz, 4min/cycle, 4cycle/axis Liquid thermal shock test: 100℃(15sec)←→0℃(5sec)/5cycle Solder heat resistance: 260℃/10 seconds /1 time Solder adhesion: 250℃/5 seconds Durability test: Accelerated aging test: 85℃/ power (maximum rated power)/5000 hours, 10000 hours High temperature storage: maximum rated storage temperature /2000 hours Low temperature storage test: maximum rated storage temperature /2000 hours Temperature cycle test: -40℃(30min)←85℃(30min), RAMP: 10/min, 500cycle Moisture resistance test: 40℃/95%/56 days, 85℃/85%/2000 hours, sealing time Communication diode element screening test: Temperature screening test: 85℃/ power (maximum rated power)/96 hours screening failure determination: Compare the optical output power with the fixed current, and determine failure if the error is larger than 10% Communication diode module screening test: Step 1: Temperature cycle screening: -40℃(30min)←→85℃(30min), RAMP: 10/min, 20cycle, no power supply Step 2: Temperature screening test: 85℃/ power (maximum rated power)/96 hours      
    Mehr lesen
  • Ac Solar Modules & Microinverters 1 Ac Solar Modules & Microinverters 1
    Oct 09, 2024
    Ac Solar Modules & Microinverters 1 The overall output power of the solar cell panel is greatly reduced, mainly because of some module damage (hail, wind pressure, wind vibration, snow pressure, lightning strike), local shadows, dirt, tilt Angle, orientation, different degrees of aging, small cracks... These problems will cause system configuration misalignment, resulting in reduced output efficiency defects, which are difficult to overcome traditional centralized inverters. Solar power generation cost ratio: module (40 ~ 50%), construction (20 ~ 30%), inverter (<10%), from the point of view of the cost proportion, the construction cost is as high as 1/3, if the inverter is directly installed on the module in production, the overall power generation cost can be greatly reduced. In order to overcome such problems, in 2008 developed a microinverter (microinverter) applied to the solar module, that is, each DC solar module is equipped with a direct conversion of direct current (DC) to AC (AC) small inverter, it can be directly installed behind the module or fixed frame, Through the micro inverter tracking, each module can operate at more than 95% of the highest power point (system more than 99.5% of the time is normal operation), such an advantage is for each module to optimize the output power, so that the entire solar power system output power to obtain the highest, for the design architecture, Even if some modules are covered by shadows, heat, dust... In addition, its power transmission value is connected to AC power supply, do not need complex and professional series and parallel, direct parallel output, can also reduce the attenuation between power transmission, recent research shows that the module assembly micro-inverter can increase the energy collection by 20%, a single module provides standard AC frequency power supply, Each module has arc protection, which can reduce the probability of arc occurrence. It can be seen that the failure rate of the centralized inverter is high, it must be replaced often, and its life is only about half of the module, if we use the micro inverter its output power is lower, it can improve the service life of the inverter. Since each module is behind the small inverter, the module does not need to configure another communication wire, can directly through the output wire of the AC Power supply, direct network communication, only need to install a power line network Bridge (Power line Ethernet Bridge) on the socket, do not need to set up another communication line, Users can directly access the web, iPhone, blackberry, tablet... Etc., watch the operation status of each module (power output, module temperature, fault message, module identification code), if there is an anomaly, it can be repaired or replaced immediately, so that the entire solar power system can operate smoothly. Output terminal of AC module: AC output, DC output, Control Interface Ac solar module English name: AC solar PV module ac pv module AC photovoltaic module AC Module PV systems composed of AC modules AC module-composed  PVAC Module Proprietary abbreviation: CVCF: constant voltage, constant frequency EIA(Energy Information Administration) The United States Energy Information Administration EMC: includes EMI(Electromagnetic interference) and EMS(electromagnetic tolerance) two parts EMI(Electromagnetic interference) : The electromagnetic noise generated by the machine itself in the process of performing the intended function is not conducive to other systems ETL: Electronic Testing Laboratory MFGR: Manufacturer HALT: Highly Accelerated Life Test. Halt: highly accelerated life test HAST(Highly Accelerated Stress Test) : Accelerated stress test HFRE: high frequency rectifier HFTR: high frequency transformer MEOST[Multiple Environment Over Stress Tests] : MEOST[multiple environment over stress tests] MIC(microinverter) : A microinverter Micro-inverters: indicates micro-inverters MPPT[Maximum Power Point Tracking] : indicates maximum power point tracking MTBF: mean time between failures NEC: National Electrical Code PVAC Module: AC solar module VVVF: Change voltage, change frequency            
    Mehr lesen
  • Ac Solar Modules & Microinverters 2 Ac Solar Modules & Microinverters 2
    Oct 08, 2024
    Ac Solar Modules & Microinverters 2 Ac module test specification: ETL Certification: UL 1741, CSA Standard 22.2, CSA Standard 22.2 No. 107.1-1, IEEE 1547, IEEE 929 PV Module: UL1703 Newsletter: 47CFR, Part 15, Class B Voltage Surge rating: IEEE 62.41 Class B National Electrical Code: NEC 1999-2008 Arc protection devices: IEEE 1547 Electromagnetic waves: BS EN 55022, FCC Class B per CISPR 22B, EMC 89/336/EEG, EN 50081-1, EN 61000-3-2, EN 50082-2, EN 60950 Micro-Inverter (Micro-inverter) : UL1741-calss A Typical component failure rate: MIL HB-217F Other specifications: IEC 503, IEC 62380 IEEE1547, IEEE929, IEEE-P929, IEEE SCC21, ANSI/NFPA-70 NEC690.2, NEC690.5, NEC690.6, NEC690.10, NEC690.11, NEC690.14, NEC690.17, NEC690.18, NEC690.64 Main specifications of AC solar module: Operating temperature: -20℃ ~ 46℃, -40℃ ~ 60℃, -40℃ ~ 65℃, -40℃ ~ 85℃, -20 ~ 90℃ Output voltage: 120/240V, 117V, 120/208V Output power frequency: 60Hz Advantages of AC modules: 1. Try to increase the power generation of each inverter power module and track the maximum power, because the maximum power point of a single component is tracked, the power generation of the photovoltaic system can be greatly improved, which can be increased by 25%. 2. By adjusting the voltage and current of each row of solar panels until all are balanced, so as to avoid system mismatch. 3. Each module has monitoring function to reduce the maintenance cost of the system and make the operation more stable and reliable. 4. The configuration is flexible, and the solar cell size can be installed in the household market according to the user's financial resources. 5. No high voltage, safer to use, easy to install, faster, low maintenance and installation cost, reduce the dependence on installation service providers, so that the solar power system can be installed by users themselves. 6. The cost is similar or even lower than that of centralized inverters. 7. Easy installation (installation time reduced by half). 8. Reduce procurement and installation costs. 9. Reduce the overall cost of solar power generation. 10. No special wiring and installation program. 11. The failure of a single AC module does not affect other modules or systems. 12. If the module is abnormal, the power switch can be automatically cut off. 13. Only a simple interrupt procedure is required for maintenance. 14. Can be installed in any direction and will not affect other modules in the system. 15. It can fill the entire setting space, as long as it is placed under it. 16. Reduce the bridge between DC line and cable. 17. Reduce DC connectors (DC connectors). 18. Reduce DC ground fault detection and set protection devices. 19. Reduce DC junction boxes. 20. Reduce the bypass diode of the solar module. 21. There is no need to purchase, install and maintain large inverters. 22. No need to buy batteries. 23. Each module is installed with anti-arc device, which meets the requirements of UL1741 specification. 24. The module communicates directly through the AC power output wire without setting up another communication line. 25. 40% less components.
    Mehr lesen
  • Ac Solar Modules & Microinverters 3 Ac Solar Modules & Microinverters 3
    Oct 08, 2024
    Ac Solar Modules & Microinverters 3 Ac module test method: 1. Output performance test: The existing module test equipment, for the non-inverter module related testing 2. Electrical stress test: Perform temperature cycle test under different conditions to evaluate the inverter's characteristics under operating temperature and standby temperature conditions 3. Mechanical stress test: find out the micro inverter with weak adhesion and the capacitor welded on the PCB board 4. Use a solar simulator for overall testing: a steady-state pulse solar simulator with large size and good uniformity is required 5. Outdoor test: Record module output I-V curve and inverter efficiency conversion curve in outdoor environment 6. Individual test: Each component of the module is tested separately in the room, and the comprehensive benefit is calculated by the formula 7. Electromagnetic interference test: Because the module has the inverter component, it is necessary to evaluate the impact on EMC&EMI when the module is running under the sunlight simulator. Common failure causes of AC modules: 1. The resistance value is incorrect 2. The diode is inverted 3. Inverter failure causes: electrolytic capacitor failure, moisture, dust Ac module test conditions: HAST test: 110℃/85%R.H./206h(Sandia National Laboratory) High temperature test (UL1741) : 50℃, 60℃ Temperature cycle: -40℃←→90℃/200cycle Wet freezing: 85℃/85%R.H.←→-40℃/10cycles, 110 cycles(Enphase-ALT test) Wet heat test: 85℃/85%R.H/1000h Multiple environmental pressure tests (MEOST) : -50℃ ~ 120℃, 30G ~ 50G vibration Waterproof: NEMA 6/24 hours Lightning test: Tolerated surge voltage up to 6000V Others (please refer to UL1703) : water spray test, tensile strength test, anti-arc test Solar related Modules MTBF: Traditional inverter 10 ~ 15years, micro inverter 331years, PV module 600years, micro inverter 600years[future] Introduction of microinverter: Instructions: Micro inverter (microinverter) applied to the solar module, each DC solar module is equipped with a, can reduce the probability of arc occurrence, microinverter can directly through the AC power output wire, direct network communication, Only need to install a power line Ethernet Bridge (Powerline Ethernet Bridge) on the socket, do not need to set up another communication line, users can through the computer web page, iPhone, blackberry, tablet computer... Etc., directly watch the operating state of each module (power output, module temperature, fault message, module identification code), if there is an anomaly, it can be repaired or replaced immediately, so that the entire solar power system can operate smoothly, because the micro inverter is installed behind the module, so the aging effect of ultraviolet on the micro inverter is also low. Microinverter specifications: UL 1741 CSA 22.2, CSA 22.2, No. 107.1-1 IEEE 1547 IEEE 929 FCC 47CFR, Part 15, Class B Compliant with the National Electric Code (NEC 1999-2008) EIA-IS-749(Corrected major application life test, specification for capacitor use) Micro inverter test: 1. Microinverter reliability test: microinverter weight +65 pounds *4 times 2. Waterproof test of micro-inverter: NEMA 6[1 meter continuous operation in water for 24 hours] 3. Wet freezing according to IEC61215 test method: 85℃/85%R.H.←→-45℃/110 days 4. Accelerated life test of micro-inverter [110 days in total, dynamic test at rated power, has ensured that micro-inverter can last more than 20 years] : Step 1: Wet freezing: 85℃/85%R.H.←→-45℃/10 days Step 2: Temperature cycle: -45℃←→85℃/50 days Step 3: Humid heat: 85℃/85%R.H./50 days
    Mehr lesen
  • IEEE1513 Temperature Cycle Test , Humidity Freezing Test and Thermal-humidity Test 1 IEEE1513 Temperature Cycle Test , Humidity Freezing Test and Thermal-humidity Test 1
    Oct 07, 2024
    IEEE1513 Temperature Cycle Test , Humidity Freezing Test and Thermal-humidity Test 1 Among the environmental reliability test requirements of Cells, Receiver, and Module of concentrated solar cells have their own test methods and test conditions in temperature cycle test, humidity freezing test, and thermal-humidity test, and there are also differences in the quality confirmation after the test. Therefore, IEEE1513 has three tests on temperature cycle test, humidity freezing test and thermal-humidity test in the specification, and its differences and test methods are sorted out for everyone's reference. Reference source: IEEE Std 1513-2001 IEEE1513-5.7 Thermal cycle test IEEE1513-5.7 thermal cycle test Objective: To determine whether the receiving end can properly withstand the failure caused by the thermal expansion difference between the parts and the joint material, especially the solder joint and package quality. Background: Temperature cycling tests of concentrated solar cells reveal welding fatigue of copper heat sinks and require complete ultrasonic transmission to detect crack growth in the cells (SAND92-0958 [B5]). Crack propagation is a function of the temperature cycle number, the initial complete solder joint, solder joint type, between the battery and the radiator due to the thermal expansion coefficient and temperature cycle parameters, after the thermal cycle test to check the receiver structure of the packaging and insulation material quality. There are two test plans for the program, tested as follows: Program A and Program B Procedure A: Test receiver resistance at thermal stress caused by thermal expansion difference Procedure B: Temperature cycle before humidity freezing test Before pretreatment, it is emphasized that the initial defects of the receiving material are caused by actual wet freezing. In order to adapt to different concentrated solar energy designs, temperature cycle tests of program A and Program B can be checked, which are listed in Table 1 and Table 2. 1. These receivers are designed with solar cells directly connected to copper radiators, and the conditions required are listed in the first row table 2. This will ensure that potential failure mechanisms, which may lead to defects occurring during the development process, are discovered. These designs adopt different methods and can use alternative conditions as shown in the table to debond the radiator of the battery. Table 3 shows that the receiving portion performs a program B temperature cycle prior to the alternative. Since program B mainly tests other materials on the receiving end, alternatives are offered to all designs Table 1 - Temperature cycle procedure test for receivers Program A- Thermal cycle Option Maximum temperature Total number of cycles Application current Required design TCR-A 110℃ 250 No The battery is welded directly to the copper radiator TCR-B 90℃ 500 No Other design records TCR-C 90℃ 250 I(applied) = Isc Other design records Table 2 - Temperature cycle procedure test of the receiver Procedure B- Temperature cycle before wet freezing test Option Maximum temperature Total number of cycles Application current Required design HFR-A   110℃ 100 No Documentation of all designs   HFR-B   90℃ 200 No Documentation of all designs   HFR-C   90℃ 100 I(applied) = Isc Documentation of all designs   Procedure: The receiving end will be subjected to a temperature cycle between -40 °C and the maximum temperature (following the test procedure in Table 1 and Table 2), the cycle test can be put into a single or two boxes of gas temperature shock test chamber, the liquid shock cycle should not be used, the dwell time is at least 10 minutes, and the high and low temperature should be within the requirement of ±5 °C. The cycle frequency should not be greater than 24 cycles a day and not less than 4 cycles a day, the recommended frequency is 18 times a day. The number of thermal cycles and the maximum temperature required for the two samples, refer to Table 3 (Procedure B of Figure 1), after which a visual inspection and electrical characteristics test will be carried out (refer to 5.1 and 5.2). These samples will be subjected to a wet freezing test, according to 5.8, and a larger receiver will refer to 4.1.1(this procedure is illustrated in Figure 2). Background: The purpose of the temperature cycle test is to accelerate the test that will appear in the short term failure mechanism, prior to the detection of concentrating solar hardware failure, therefore, the test includes the possibility of seeing a wide temperature difference beyond the module range, the upper limit of the temperature cycle of 60 ° C is based on the softening temperature of many module acrylic lenses, for other designs, the temperature of the module. The upper limit of the temperature cycle is 90 ° C (see Table 3) Table 3- List of test conditions for module temperature cycles Procedure B Temperature cycle pretreatment before wet freezing test Option Maximum temperature Total number of cycles Application current Required design TCM-A   90℃ 50 No Documentation of all designs   TEM-B   60℃ 200 No Plastic lens module design may be required    
    Mehr lesen
  • Zuverlässigkeit – Umwelt Zuverlässigkeit – Umwelt
    Sep 28, 2024
    Zuverlässigkeit – UmweltDie Zuverlässigkeitsanalyse basiert auf quantitativen Daten als Grundlage der Produktqualität, über die experimentelle Simulation, das Produkt in einer bestimmten Zeit, die spezifische Nutzung von Umgebungsbedingungen, die Umsetzung spezifischer Spezifikationen, die Wahrscheinlichkeit eines erfolgreichen Abschlusses der Arbeitsziele bis hin zu quantitativen Daten als Grundlage für die Produktqualitätssicherung. Unter diesen sind Umwelttests ein häufiges Analyseelement in der Zuverlässigkeitsanalyse.Bei der Umweltzuverlässigkeitsprüfung handelt es sich um eine Prüfung, die durchgeführt wird, um sicherzustellen, dass die Funktionszuverlässigkeit eines Produkts während der angegebenen Lebensdauer unter allen Umständen, unter denen es verwendet, transportiert oder gelagert werden soll, erhalten bleibt. Die spezifische Testmethode besteht darin, das Produkt natürlichen oder künstlichen Umweltbedingungen auszusetzen, die Leistung des Produkts unter den Umweltbedingungen der tatsächlichen Verwendung, des Transports und der Lagerung zu bewerten und die Auswirkungen von Umweltfaktoren und deren Wirkungsmechanismus zu analysieren.Das Labor für Nanozuverlässigkeitsanalyse von Sembcorp bewertet die IC-Zuverlässigkeit hauptsächlich durch Erhöhung von Temperatur, Luftfeuchtigkeit, Vorspannung, analogen E/A und anderen Bedingungen sowie durch Auswahl von Bedingungen zur Beschleunigung der Alterung entsprechend den IC-Designanforderungen. Die wichtigsten Testmethoden sind wie folgt:TC-TemperaturzyklustestExperimenteller Standard: JESD22-A104Ziel: Beschleunigung der Auswirkung von Temperaturänderungen auf die ProbeTestverfahren: Die Probe wird in eine Testkammer gegeben, die zwischen bestimmten Temperaturen wechselt und mindestens zehn Minuten lang bei jeder Temperatur gehalten wird. Die Temperaturextreme hängen von den in der Prüfmethode gewählten Bedingungen ab. Die Gesamtspannung entspricht der Anzahl der bei der angegebenen Temperatur durchgeführten Zyklen.Kapazität der AusrüstungTemperaturbereich -70℃—+180℃Temperaturänderungsrate15℃/min linearInternes Volumen 160LInterne Dimension B800*H500*T400mmExterne DimensionB1000 * H1808 * T1915mmProbenmenge 25 / 3LotZeit/Vergangenheit 700 Zyklen / 0 Fehler2300 Zyklen / 0 FehlerBLT-Hochtemperatur-Bias-TestExperimenteller Standard: JESD22-A108Ziel: Der Einfluss einer hohen Temperaturvorspannung auf ProbenTestvorgang: Geben Sie die Probe in die Experimentierkammer, stellen Sie den angegebenen Spannungs- und Stromgrenzwert im Netzteil ein, versuchen Sie es bei Raumtemperatur zu betreiben, beobachten Sie, ob der begrenzte Strom im Netzteil auftritt, messen Sie, ob die Klemmenspannung des Eingangschips den Erwartungen entspricht. Notieren Sie den aktuellen Wert bei Raumtemperatur und stellen Sie die angegebene Temperatur in der Kammer ein. Wenn die Temperatur stabil auf dem eingestellten Wert liegt, schalten Sie das Gerät bei hoher Temperatur ein und zeichnen Sie den Hochtemperatur-Stromwert aufGerätekapazität:Temperaturbereich +20℃–+300℃Internes Volumen 448LInterne Dimension B800*H800 * T700mmExterne DimensionB1450 * H1215 * T980mmProbenmenge 25 / 3LotZeit/Vergangenheit Gehäusetemperatur 125 °C, 1000 Stunden/0 FehlerHAST hochbeschleunigter StresstestExperimenteller Standard: JESD22-A110/A118 (EHS-431ML, EHS-222MD)Ziel: HAST bietet konstante, vielfältige Stressbedingungen, einschließlich Temperatur, Feuchtigkeit, Druck und Vorspannung. Wird durchgeführt, um die Zuverlässigkeit von nicht gekapselten, verpackten Geräten zu bewerten, die in feuchten Umgebungen betrieben werden. Mehrere Belastungsbedingungen können das Eindringen von Feuchtigkeit durch die Vergussmasse oder entlang der Grenzfläche zwischen dem äußeren Schutzmaterial und dem durch die Verkapselung verlaufenden Metallleiter beschleunigen. Wenn Wasser die Oberfläche des blanken Teils erreicht, erzeugt das angelegte Potenzial einen elektrolytischen Zustand, der den Aluminiumleiter korrodiert und die Gleichstromparameter des Geräts beeinflusst. Auf der Chipoberfläche vorhandene Verunreinigungen wie Chlor können den Korrosionsprozess stark beschleunigen. Darüber hinaus kann unter diesen Bedingungen auch zu viel Phosphor in der Passivierungsschicht reagieren.Gerät 1 und Gerät 2Gerätekapazität:Probenmenge 25 / 3LotZeit/Vergangenheit 130℃, 85 % RH, 96 Std./ 0 Fehler110℃, 85 % relative Luftfeuchtigkeit, 264 Stunden/0 FehlerGerät 1Temperaturbereich-105℃—+142,9℃Luftfeuchtigkeitsbereich 75 % rF – 100 % rFDruckbereich 0,02–0,196 MPaInternes Volumen 51LInterne Dimension B355 x H355 x T426 mmExterne DimensionB860 * H1796 * T1000mmGerät 2Temperaturbereich-105℃—+142,9℃Luftfeuchtigkeitsbereich 75 % rF – 100 % rFDruckbereich 0,02–0,392 MPaInternes Volumen 180LInterne Dimension B569 x H560 x T760 mmExterne DimensionB800 * H1575 * T1460mmTHB-Temperatur- und FeuchtigkeitszyklustestExperimenteller Standard: JESD22-A101Ziel: Der Einfluss von Temperatur- und Feuchtigkeitsänderungen auf die ProbeExperimenteller Ablauf: Geben Sie die Probe in die Experimentierkammer, stellen Sie den angegebenen Spannungs- und Stromgrenzwert im Netzteil ein, versuchen Sie es bei Raumtemperatur zu betreiben, beobachten Sie, ob der begrenzte Strom im Netzteil auftritt, messen Sie, ob die Eingangschip-Klemmenspannung den Erwartungen entspricht. Notieren Sie den aktuellen Wert bei Raumtemperatur und stellen Sie die angegebene Temperatur in der Kammer ein. Wenn die Temperatur stabil auf dem eingestellten Wert liegt, schalten Sie das Gerät bei hoher Temperatur ein und zeichnen Sie den Hochtemperatur-Stromwert aufGerätekapazität:Temperaturbereich-40℃—+180℃Luftfeuchtigkeitsbereich 10 % rF – 98 % rFTemperaturumrechnungsrate3℃/minInternes Volumen 784LInterne Dimension B1000*H980*T800mmExterne DimensionB1200 * H1840 * T1625mmProbenmenge 25 / 3LotZeit/Vergangenheit 85℃, 85 % RH, 1000 Stunden/0 FehlerTemperatur- und Feuchtigkeitszyklus des Verfahrens, bei einer Temperatur über 100℃ entsteht keine Feuchtigkeit TSA&TSB-TemperaturschocktestExperimenteller Standard: JESD22-A106Ziel: Beschleunigung der Auswirkung von Temperaturänderungen auf die ProbeTestablauf: Die Probe wird in die Testkammer gegeben und in der Kammer wird die vorgegebene Temperatur eingestellt. Vor dem Aufheizen wird bestätigt, dass die Probe auf der Form fixiert wurde, wodurch Schäden durch das Herunterfallen der Probe in die Kammer während des Experiments verhindert wurden.Gerätekapazität: TSA TSBTemperaturbereich-70℃—+200℃ -65℃—+200℃Temperaturänderungsrate≤5min
    Mehr lesen
  • Was sind die Sicherheitsschutzsysteme der Hoch- und Niedertemperatur-Testkammer? Was sind die Sicherheitsschutzsysteme der Hoch- und Niedertemperatur-Testkammer?
    Sep 26, 2024
    Was sind die Sicherheitsschutzsysteme der Hoch- und Niedertemperatur-Testkammer?1, Auslauf-/Überspannungsschutz: Auslaufschutz des Auslaufschutzschalters FUSE.RC elektronischer Überspannungsschutz aus Taiwan2, das interne selbstautomatische Erkennungs- und Schutzgerät des Controllers(1) Temperatur-/Feuchtigkeitssensor: Der Controller regelt die Temperatur und Luftfeuchtigkeit im Testbereich innerhalb des eingestellten Bereichs über den Temperatur- und Feuchtigkeitssensor(2) Übertemperaturalarm des Controllers: Wenn sich das Heizrohr in der Kammer weiter erwärmt und die durch die internen Parameter des Controllers eingestellte Temperatur überschreitet, löst der darin enthaltene Summer einen Alarm aus und muss manuell zurückgesetzt und wiederverwendet werden3, Fehlererkennungs-Steuerschnittstelle: Automatische Erkennungsschutzeinstellungen für externe Fehler(1) Die erste Schicht des Hochtemperatur-Übertemperaturschutzes: Einstellungen für den Übertemperaturschutz der Betriebssteuerung(2) Die zweite Schicht des Hochtemperatur- und Übertemperaturschutzes: Durch die Verwendung eines Übertemperaturschutzes gegen trockenes Brennen wird das System nicht ständig erhitzt, um das Gerät zu verbrennen(3) Wasserbruch- und Luftverbrennungsschutz: Die Feuchtigkeit wird durch einen Übertemperaturschutz gegen Trockenbrennen geschützt(4) Kompressorschutz: Kältemitteldruckschutz und Überlastschutzvorrichtung4, Fehlerschutz: Wenn der Fehler auftritt, unterbrechen Sie die Steuerstromversorgung und die Fehlerursachenanzeige sowie das Alarmausgangssignal5, Automatische Wassermangelwarnung: Die aktive Wassermangelwarnung der Maschine6, Dynamischer Hoch- und Tieftemperaturschutz: Mit den Einstellungsbedingungen zur dynamischen Anpassung des Hoch- und Tieftemperaturschutzwerts
    Mehr lesen

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns