Zuverlässigkeitstest für WärmerohreBei der Heatpipe-Technologie handelt es sich um ein von G.M. erfundenes Wärmeübertragungselement namens „Heatpipe“. Rover des Los Alamos National Laboratory im Jahr 1963, der das Prinzip der Wärmeleitung und die schnellen Wärmeübertragungseigenschaften des Kühlmediums voll ausnutzt und die Wärme des Heizobjekts über das Wärmerohr schnell an die Wärmequelle überträgt. Seine Wärmeleitfähigkeit übertrifft die jedes bekannten Metalls. Die Heatpipe-Technologie ist in der Luft- und Raumfahrt, im Militär und in anderen Branchen weit verbreitet, seit sie in der Kühlerherstellungsindustrie eingeführt wurde, was dazu führte, dass die Menschen die Designidee des traditionellen Kühlers änderten und den einzigen Wärmeableitungsmodus, auf den sie sich lediglich verlassen, abgeschafft haben Motor mit hohem Luftvolumen, um eine bessere Wärmeableitung zu erzielen. Durch den Einsatz der Heatpipe-Technologie kann der Kühler auch bei Verwendung eines Motors mit niedriger Drehzahl und geringem Luftvolumen zufriedenstellende Ergebnisse erzielen, sodass das durch die Luftkühlungswärme verursachte Geräuschproblem gut gelöst wurde und eine neue Welt in der Luftkühlung eröffnet wurde Wärmeableitungsindustrie.Testbedingungen für die Zuverlässigkeit von Wärmerohren:Hochtemperatur-Stresstest: 150℃/24 StundenTemperaturwechseltest:120℃(10min)←→-30℃(10min), Rampe: 0,5℃, 10 Zyklen 125℃(60min)←→-40℃(60min), Rampe: 2,75℃, 10 ZyklenThermoschocktest:120℃(2min)←→-30℃(2min), 250 Zyklen125℃(5min)←→-40℃(5min), 250 Zyklen100℃(5min)←→-50℃(5min), 2000 Zyklen (nach 200 Zyklen einmal prüfen)Test bei hoher Temperatur und hoher Luftfeuchtigkeit:85℃/85%R.H./1000 StundenBeschleunigter Alterungstest:110℃/85%RH/264hWeitere Heatpipe-Testgegenstände:Salzsprühtest, Festigkeitstest (Strahltest), Leckratentest, Vibrationstest, Zufallsvibrationstest, mechanischer Schocktest, Heliumverbrennungstest, Leistungstest, Windkanaltest
Hoch- und Tieftemperaturteststandard für PC-Kunststoffmaterial1. Hochtemperaturtest Nach 4-stündiger Lagerung bei 80 ± 2 °C und 2-stündiger Normaltemperatur erfüllen die Abmessungen, der Isolationswiderstand, der Spannungswiderstand, die Tastenfunktion und der Schleifenwiderstand die normalen Anforderungen und es treten keine abnormalen Phänomene wie Verformung oder Verwerfung auf und entschleimendes Aussehen. Der konvexe Schlüsselpunkt kollabiert bei hoher Temperatur und die Presskraft wird ohne Beurteilung kleiner.2. NiedertemperaturtestNach 4-stündiger Lagerung bei -30 ± 2 °C und 2 Stunden bei normaler Temperatur entsprechen die Abmessungen, der Isolationswiderstand, der Spannungswiderstand, die Tastenfunktion und der Schleifenwiderstand den normalen Anforderungen und es treten keine ungewöhnlichen Phänomene wie Verformung oder Verwerfung auf und entschleimendes Aussehen.3. Temperaturzyklustest30 Minuten lang in eine Umgebung mit 70 ± 2 °C stellen und 5 Minuten lang bei Raumtemperatur herausnehmen. 30 Minuten lang in einer Umgebung von -20 ± 2 °C belassen, herausnehmen und 5 Minuten lang bei Raumtemperatur stehen lassen. Nach diesen 5 Zyklen erfüllen die Abmessungen, der Isolationswiderstand, der Spannungswiderstand, die Tastenfunktion und der Schaltkreiswiderstand die normalen Anforderungen und es treten keine Verformungen, Verwerfungen, Entschleimungen oder andere abnormale Phänomene auf. Der konvexe Schlüsselpunkt kollabiert bei hoher Temperatur und die Presskraft wird ohne Beurteilung kleiner.4. HitzebeständigkeitNach 48-stündiger Lagerung in einer Umgebung mit einer Temperatur von 40 ± 2 °C und einer relativen Luftfeuchtigkeit von 93 ± 2 % rF entsprechen die Abmessungen, der Isolationswiderstand, der Spannungswiderstand, die Tastenfunktion und der Schleifenwiderstand den normalen Anforderungen und das Erscheinungsbild nicht verformt, verzogen oder entschleimt ist. Der konvexe Schlüsselpunkt kollabiert bei hoher Temperatur und die Presskraft wird ohne Beurteilung kleiner.Nationaler Standardwert für Kunststoffprüfungen:Gb1033-86 Prüfverfahren für Kunststoffdichte und relative DichteGbl636-79 Prüfverfahren für die scheinbare Dichte von FormkunststoffenGB/T7155.1-87 Teil zur Bestimmung der Dichte thermoplastischer Rohre und Rohrverbindungsstücke: Bestimmung der Referenzdichte von Polyethylenrohren und RohrverbindungsstückenGB/T7155.2-87 Thermoplastische Rohre und Formstücke – Bestimmung der Dichte – Teil L: Bestimmung der Dichte von Polypropylenrohren und FormstückenGB/T1039-92 Allgemeine Regeln zur Prüfung der mechanischen Eigenschaften von KunststoffenGB/ T14234-93 Oberflächenrauheit von KunststoffteilenGb8807-88 Kunststoff-Spiegelglanz-TestmethodePrüfverfahren für die Zugeigenschaften der Kunststofffolie GBL3022-9LGB/ TL040-92 Prüfverfahren für Zugeigenschaften von KunststoffenPrüfverfahren für Zugeigenschaften von thermoplastischen Rohren aus Polyvinylchlorid GB/T8804.1-88GB/T8804.2-88 Prüfverfahren für Zugeigenschaften von thermoplastischen Rohren, PolyethylenrohrenHg2-163-65-Kunststoffdehnungstestverfahren bei niedriger TemperaturGB/T5471-85 Verfahren zur Herstellung duroplastischer FormprobenHG/T2-1122-77 thermoplastische ProbenvorbereitungsmethodeGB/T9352-88 Probenvorbereitung für thermoplastische Kompressionwww.oven.cclabcompanion.cn Lab Companion Chinalabcompanion.com.cn Lab Companion Chinalab-companion.com Lab Companion labcompanion.com.hk Lab Companion Hongkonglabcompanion.hk Lab Companion Hongkonglabcompanion.de Lab Companion Deutschland labcompanion.it Lab Companion Italien labcompanion.es Lab Companion Spanien labcompanion.com.mx Lab Companion Mexiko labcompanion.uk Lab Companion Vereinigtes Königreichlabcompanion.ru Lab Companion Russland labcompanion.jp Lab Companion Japan labcompanion.in Lab Companion Indien labcompanion.fr Lab Companion Frankreichlabcompanion.kr Lab Companion Korea
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.