PCB führt beschleunigte Tests der Ionenmigration und CAF durch HAST durchUm die Qualität und Zuverlässigkeit der Leiterplatte langfristig zu gewährleisten, muss ein Oberflächenisolationswiderstandstest (SIR) (Surface Insulation Resistance) durchgeführt werden, um herauszufinden, ob auf der Leiterplatte MIG (Ionenmigration) und CAF (Glas) auftreten Beim Phänomen des Faseranodenlecks wird die Ionenwanderung in einem feuchten Zustand (z. B. 85 °C/85 % relative Luftfeuchtigkeit) mit einer konstanten Vorspannung (z. B. 50 V) durchgeführt. Das ionisierte Metall bewegt sich zwischen den gegenüberliegenden Elektroden (Wachstum von Kathode zu Anode), der relativen Elektrode wird auf das ursprüngliche Metall reduziert und dendritisches Metallphänomen ausgefällt, was oft zu einem Kurzschluss führt, die Ionenmigration ist sehr fragil, der Strom, der im Moment der Stromversorgung erzeugt wird, führt dazu, dass sich die Ionenmigration selbst auflöst und verschwindet, häufig verwendete MIG- und CAF-Normen: IPC -TM-650-2.6.14., IPC-SF-G18, IPC-9691A, IPC-650-2.6.25, MIL-F-14256D, ISO 9455-17, JIS Z 3284, JIS Z 3197... Aber Seine Testzeit beträgt oft 1000 Stunden, 2000 Stunden, für zyklische Produkte langsamer Notfall, und HAST ist eine Testmethode, die auch der Name des Geräts ist. HAST dient zur Verbesserung der Umweltbelastung (Temperatur, Luftfeuchtigkeit, Druck) in der Umgebung mit ungesättigter Luftfeuchtigkeit ( Luftfeuchtigkeit: 85 % R.H.) Beschleunigen Sie den Testprozess, um die Testzeit zu verkürzen. Wird zur Beurteilung des Leiterplattenpressens, des Isolationswiderstands und der Feuchtigkeitsabsorptionswirkung verwandter Materialien verwendet und verkürzt die Testzeit bei hoher Temperatur und Luftfeuchtigkeit (85 °C/85 %). R.H. /1000h→110℃/ 85%R.H. /264h) sind die wichtigsten Referenzspezifikationen des PCB-HAST-Tests: JESD22-A110-B, JCA-ET-01, JCA-ET-08.HAST Accelerated Life-Modus:★ Temperatur erhöhen (110℃, 120℃, 130℃)★ Sorgen Sie für eine hohe Luftfeuchtigkeit (85 % relative Luftfeuchtigkeit).Gemessener Druck (110 ℃ / / 0,12 MPa, 120 ℃, 85 % / 85 % / 85 % 0,17 MPa, 130 ℃ / / 0,23 MPa)★ Zusätzliche Vorspannung (DC)HAST-Testbedingungen für PCB:1. Jca-et-08:110, 120, 130 ℃/85 % R.H. /5 ~ 100V2. Epoxidharz-Mehrschichtplatte mit hohem TG: 120℃/85%R.H./100V, 800 Stunden3. Mehrschichtplatine mit niedriger Induktivität: 110℃/85% R.H./50V/300h4. Mehrschichtige Leiterplattenverkabelung, Material: 120℃/85% R.H/100V/800h5. Halogenfreies Isoliermaterial mit niedrigem Ausdehnungskoeffizienten und geringer Oberflächenrauheit: 130 ℃/ 85 % relative Luftfeuchtigkeit/12 V/240 Std6. Optisch aktiver Abdeckfilm: 130℃/85% R.H/6V/100h7. Wärmehärtungsplatte für COF-Folie: 120℃/85% R.H/100V/100hLab Companion HAST Hochbeschleunigungs-Stresstestsystem (JESD22-A118/JESD22-A110)Das von Macro Technology unabhängig entwickelte HAST besitzt vollständig unabhängige geistige Eigentumsrechte und die Leistungsindikatoren können ausländische Marken vollständig bewerten. Es können einschichtige und zweischichtige Modelle sowie zwei Serien von UHAST BHAST bereitgestellt werden. Es löst das Problem der langfristigen Abhängigkeit von Importen dieser Ausrüstung, der langen Lieferzeit importierter Ausrüstung (bis zu 6 Monate) und des hohen Preises. High Accelerated Stress Testing (HAST) kombiniert hohe Temperatur, hohe Luftfeuchtigkeit, hohen Druck und Zeit, um die Zuverlässigkeit von Komponenten mit oder ohne elektrische Vorspannung zu messen. HAST-Tests beschleunigen den Stress traditionellerer Tests auf kontrollierte Weise. Es handelt sich im Wesentlichen um einen Korrosionsversagenstest. Korrosionsbedingte Ausfälle werden beschleunigt und Mängel wie Verpackungsdichtungen, Materialien und Verbindungen werden in relativ kurzer Zeit erkannt.
Zuverlässigkeit des KeramiksubstratsUnter Keramik-PCB (Keramiksubstrat) versteht man eine spezielle Prozessplatte, bei der Kupferfolie bei hoher Temperatur direkt mit der Oberfläche (einfach oder doppelt) eines Keramiksubstrats aus Aluminiumoxid (Al2O3) oder Aluminiumnitrid (AlN) verbunden wird. Das ultradünne Verbundsubstrat verfügt über eine hervorragende elektrische Isolationsleistung, eine hohe Wärmeleitfähigkeit, eine hervorragende Lötbarkeit und eine hohe Haftfestigkeit und kann in eine Vielzahl von Grafiken wie Leiterplatten geätzt werden, mit hoher Strombelastbarkeit. Daher ist das Keramiksubstrat zum Grundmaterial der Hochleistungselektronik-Schaltungsstrukturtechnologie und Verbindungstechnologie geworden, das für Produkte mit hohem Heizwert (hochhelle LED, Solarenergie) geeignet ist und auf die seine hervorragende Wetterbeständigkeit angewendet werden kann raue Außenumgebungen.Hauptanwendungsprodukte: Hochleistungs-LED-Trägerplatine, LED-Leuchten, LED-Straßenlaternen, SolarwechselrichterEigenschaften des Keramiksubstrats:Struktur: Hervorragende mechanische Festigkeit, geringe Verformung, thermischer Ausdehnungskoeffizient nahe an Siliziumwafer (Aluminiumnitrid), hohe Härte, gute Verarbeitbarkeit, hohe MaßhaltigkeitKlima: Geeignet für Umgebungen mit hohen Temperaturen und hoher Luftfeuchtigkeit, hohe Wärmeleitfähigkeit, gute Hitzebeständigkeit, Korrosions- und Verschleißfestigkeit, UV- und VergilbungsbeständigkeitChemie: Bleifrei, ungiftig, gute chemische StabilitätElektrisch: Hoher Isolationswiderstand, einfache Metallisierung, Schaltungsgrafik und starke HaftungMarkt: Reichlich vorhandene Materialien (Ton, Aluminium), einfache Herstellung, niedriger PreisVergleich der thermischen Eigenschaften des PCB-Materials (Leitfähigkeit):Glasfaserplatte (herkömmliche Leiterplatte): 0,5 W/mK, Aluminiumsubstrat: 1–2,2 W/mK, Keramiksubstrat: 24[Aluminiumoxid]~170[Aluminiumnitrid]W/mKWärmeübergangskoeffizient des Materials (Einheit W/mK):Harz: 0,5, Aluminiumoxid: 20-40, Siliziumkarbid: 160, Aluminium: 170, Aluminiumnitrid: 220, Kupfer: 380, Diamant: 600Prozessklassifizierung für Keramiksubstrate:Entsprechend der Linie wird der Keramiksubstratprozess unterteilt in: Dünnschicht, Dickschicht, bei niedriger Temperatur mitgebrannte Mehrschichtkeramik (LTCC).Dünnschichtprozess (DPC): Präzise Kontrolle des Komponentenschaltungsdesigns (Linienbreite und Schichtdicke)Dickschichtverfahren (Dickschicht): zur Bereitstellung von Wärmeableitung und WitterungseinflüssenBei niedriger Temperatur mitgebrannte Mehrschichtkeramik (HTCC): Die Verwendung von Glaskeramik mit niedriger Sintertemperatur, niedrigem Schmelzpunkt, hoher Leitfähigkeit von Edelmetallen (mitgebrannte Eigenschaften, mehrschichtiges Keramiksubstrat) und Montage.Bei niedriger Temperatur gemeinsam gebrannte Mehrschichtkeramik (LTCC): Stapeln Sie mehrere Keramiksubstrate und betten Sie passive Komponenten und andere ICs einDünnschicht-Keramiksubstratprozess:· Vorbehandlung → Sputtern → Photoresist-Beschichtung → Belichtungsentwicklung → Linienbeschichtung → Filmentfernung· Laminieren → Heißpressen → Entfetten → Substratbrennen → Schaltkreismusterbildung → Schaltkreisbrennen· Laminierung → Oberflächenmuster der gedruckten Schaltung → Heißpressen → Entfetten → Mitbrennen· Grafiken für gedruckte Schaltkreise → Laminierung → Heißpressen → Entfetten → MitbrennenTestbedingungen für die Zuverlässigkeit von Keramiksubstraten:Hochtemperaturbetrieb des Keramiksubstrats: 85℃Betrieb bei niedriger Temperatur des Keramiksubstrats: -40℃Kälte und Thermoschock des Keramiksubstrats:1. 155℃(15min)←→-55℃(15min)/300Zyklen2. 85 ℃ (30 Min.) bitte - - 40 ℃ (30 Min.)/RAMP: 10 Min. (12,5 ℃/Min.) / 5 ZyklenHaftung auf Keramiksubstrat: Mit 3M#600-Klebeband auf die Oberfläche der Platine kleben. Nach 30 Sekunden zügig im 90°-Winkel zur Plattenoberfläche abreißen.Experiment mit roter Tinte auf dem Keramiksubstrat: Eine Stunde lang kochen, undurchlässigPrüfmittel:1. Testkammer für feuchte Wärme bei hohen und niedrigen Temperaturen2. Dreikammer-Gas-Kälte- und Hitzeschock-Testkammer
IEC-60068-2 Kombinierter Test von Kondensation sowie Temperatur und LuftfeuchtigkeitUnterschied der IEC60068-2-Testspezifikationen für feuchte HitzeIn der IEC60068-2-Spezifikation gibt es insgesamt fünf Arten von Prüfungen bei feuchter Hitze, zusätzlich zu den üblichen Tests bei 85℃/85 % R.F., 40℃/93 % R.F. Zusätzlich zu den Festpunkt-Hochtemperatur- und Hochfeuchtigkeitstests gibt es zwei weitere spezielle Tests [IEC60068-2-30, IEC60068-2-38], diese beiden sind abwechselnde Nass- und Feuchtigkeitszyklen und kombinierte Temperatur- und Feuchtigkeitszyklen, so der Test Der Prozess verändert Temperatur und Luftfeuchtigkeit und sogar mehrere Gruppen von Programmverknüpfungen und Zyklen, die in IC-Halbleitern, Teilen, Geräten usw. angewendet werden. Um das Kondensationsphänomen im Freien zu simulieren, bewerten Sie die Fähigkeit des Materials, die Wasser- und Gasdiffusion zu verhindern und die Produktentwicklung zu beschleunigen Toleranz gegenüber Verschlechterung wurden die fünf Spezifikationen in einer Vergleichstabelle der Unterschiede in den Nass- und Hitzetestspezifikationen organisiert und die Testpunkte für den Nass- und Hitze-Kombinationszyklustest sowie die Testbedingungen und -punkte von GJB im Detail erläutert der Nass- und Hitzetest wurden ergänzt.Wechselnder feuchter Wärmezyklustest nach IEC60068-2-30Bei diesem Test wird die Testtechnik verwendet, bei der Feuchtigkeit und Temperatur abwechselnd aufrechterhalten werden, damit Feuchtigkeit in die Probe eindringt und Kondensation (Kondensation) auf der Oberfläche des zu testenden Produkts verursacht, um die Anpassungsfähigkeit der Komponente, Ausrüstung oder anderer Produkte zu bestätigen Verwendung, Transport und Lagerung unter der Kombination von hoher Luftfeuchtigkeit und zyklischen Temperatur- und Feuchtigkeitsänderungen. Diese Spezifikation ist auch für große Testproben geeignet. Wenn die Ausrüstung und der Testprozess die Leistung der Heizkomponenten für diesen Test beibehalten müssen, ist der Effekt besser als bei IEC60068-2-38. Die in diesem Test verwendete hohe Temperatur hat zwei (40 ° C, 55 ° C). 40 ° C erfüllen die meisten Hochtemperaturumgebungen der Welt, während 55 ° C alle Hochtemperaturumgebungen der Welt erfüllen. Die Testbedingungen sind auch in [Zyklus 1, Zyklus 2] unterteilt. In Bezug auf den Schweregrad sind [Zyklus 1] ist höher als [Zyklus 2].Geeignet für Nebenprodukte: Komponenten, Geräte, verschiedene Arten von zu testenden ProduktenTestumgebung: Die Kombination aus hoher Luftfeuchtigkeit und zyklischen Temperaturschwankungen führt zu Kondensation, und drei Arten von Umgebungen können getestet werden [Verwendung, Lagerung, Transport ([Verpackung ist optional)]Prüfbelastung: Beim Atmen dringt Wasserdampf einOb Strom vorhanden ist: JaNicht geeignet für: Zu leichte und zu kleine TeileTestprozess und Inspektion und Beobachtung nach dem Test: Überprüfen Sie die elektrischen Veränderungen nach Feuchtigkeit [nehmen Sie die Zwischeninspektion nicht heraus]Testbedingungen: Luftfeuchtigkeit: 95 % relative Luftfeuchtigkeit [Temperaturänderung nach Aufrechterhaltung hoher Luftfeuchtigkeit] (niedrige Temperatur 25 ± 3 ← → hohe Temperatur 40 ℃ oder 55 ℃)Steig- und Abkühlrate: Erhitzen (0,14℃/min), Abkühlen (0,08 ~ 0,16℃/min)Zyklus 1: Wo Absorption und Atmungseffekte wichtige Merkmale sind, ist die Testprobe komplexer [Luftfeuchtigkeit nicht weniger als 90 % relative Luftfeuchtigkeit]Zyklus 2: Bei weniger offensichtlichen Absorptions- und Atmungseffekten ist die Testprobe einfacher [die Luftfeuchtigkeit beträgt nicht weniger als 80 % R.H.]Vergleichstabelle der IEC60068-2-FeuchtwärmetestspezifikationsunterschiedeBei Komponentenprodukten wird eine Kombinationstestmethode verwendet, um die Bestätigung der Beständigkeit des Testmusters gegen Zersetzung unter Bedingungen hoher Temperatur, hoher Luftfeuchtigkeit und niedriger Temperatur zu beschleunigen. Diese Testmethode unterscheidet sich von den Produktfehlern, die durch Atmung [Tau, Feuchtigkeitsaufnahme] gemäß IEC60068-2-30 verursacht werden. Der Schweregrad dieses Tests ist höher als der anderer feuchter Wärmezyklustests, da es während des Tests zu mehr Temperaturänderungen und [Atmung] kommt, der Temperaturbereich des Zyklus größer ist [von 55℃ bis 65℃] und die Temperaturänderungsrate größer ist Der Temperaturzyklus ist schneller [Temperaturanstieg: 0,14 °C/min wird zu 0,38 °C/min, 0,08 °C/min wird zu 1,16 °C/min], außerdem unterscheidet er sich vom allgemeinen feuchten Wärmezyklus, dem Niedertemperaturzyklus Eine Temperatur von -10 °C wird hinzugefügt, um die Atemfrequenz zu beschleunigen und das im Spalt des Ersatzstoffs kondensierte Wasser zum Gefrieren zu bringen, was das Merkmal dieser Testspezifikation ist. Der Testprozess ermöglicht den Leistungstest und den Test der angelegten Lastleistung, kann jedoch aufgrund der Erwärmung des Nebenprodukts nach der Stromversorgung die Testbedingungen (Temperatur- und Feuchtigkeitsschwankungen, Anstiegs- und Abkühlgeschwindigkeit) nicht beeinflussen. Aufgrund der Temperatur- und Feuchtigkeitsveränderung während des Testvorgangs kann es nicht zu Kondenswassertropfen auf der Oberseite der Testkammer zum Seitenprodukt kommen.Geeignet für Nebenprodukte: Komponenten, Versiegelung von Metallkomponenten, Versiegelung von LeitungsendenTestumgebung: Kombination aus hohen Temperaturen, hoher Luftfeuchtigkeit und niedrigen TemperaturenTestbelastung: beschleunigte Atmung + gefrorenes WasserOb es eingeschaltet werden kann: Es kann an eine externe elektrische Last angeschlossen werden (es kann die Bedingungen der Prüfkammer aufgrund der Leistungserwärmung nicht beeinträchtigen)Nicht anwendbar: Kann feuchte Hitze und abwechselnde feuchte Hitze nicht ersetzen; dieser Test wird verwendet, um andere Defekte als die Atmung hervorzurufenTestprozess und Inspektion und Beobachtung nach dem Test: Überprüfen Sie die elektrischen Veränderungen nach Feuchtigkeit [unter Bedingungen hoher Luftfeuchtigkeit prüfen und nach dem Test herausnehmen]Testbedingungen: Feuchtwärmezyklus (bitte 25 - 65 + 2 ℃ / 93 + / - 3 % R.F.) bitte - Niedertemperaturzyklus (25 bitte - 65 + 2 °C / 93 + 3 % R.F. - - 10 + 2 ℃) X5Zyklus = 10 ZyklenSteig- und Abkühlrate: Erhitzen (0,38℃/min), Abkühlen (1,16℃/min)Wärme- und Feuchtigkeitszyklus (25←→65±2℃/93±3%R.H.)Niedertemperaturzyklus (25←→65±2℃/93±3%R.H. →-10±2℃)GJB150-09 Feuchte-Hitze-TestAnweisungen: Der Nass- und Hitzetest von GJB150-09 soll die Fähigkeit von Geräten bestätigen, dem Einfluss heißer und feuchter Atmosphäre standzuhalten. Er eignet sich für Geräte, die in heißen und feuchten Umgebungen gelagert und verwendet werden, für Geräte, die einer hohen Luftfeuchtigkeit ausgesetzt sind, oder für Geräte, die dies können potenzielle Probleme im Zusammenhang mit Hitze und Feuchtigkeit haben. Heiße und feuchte Standorte können das ganze Jahr über in den Tropen, saisonal in mittleren Breiten und in Geräten auftreten, die kombinierten Druck-, Temperatur- und Feuchtigkeitsschwankungen ausgesetzt sind, mit besonderem Schwerpunkt auf 60 °C / 95 % relativer Luftfeuchtigkeit. Diese hohe Temperatur und Luftfeuchtigkeit kommen in der Natur nicht vor und simulieren auch nicht den Feuchtigkeits- und Wärmeeffekt nach Sonneneinstrahlung. Sie können jedoch die Teile der Ausrüstung finden, bei denen potenzielle Probleme auftreten, die komplexe Temperatur- und Feuchtigkeitsumgebung jedoch nicht reproduzieren, bewerten Langzeiteffekt und kann die Auswirkungen der Feuchtigkeit, die mit der Umgebung mit niedriger Luftfeuchtigkeit verbunden sind, nicht reproduzieren.Relevante Ausrüstung für Kondensations-, Nassgefrier- und Nasswärme-Kombitests: Testkammer mit konstanter Temperatur und Luftfeuchtigkeit
Zweck des Temperaturschocktests
Zuverlässigkeits-Umwelttests Neben hohen Temperaturen, niedrigen Temperaturen, hohen Temperaturen und hoher Luftfeuchtigkeit sowie kombinierten Temperatur- und Feuchtigkeitszyklen ist Temperaturschock (Kälte- und Heißschock) auch ein häufiges Testprojekt, Temperaturschocktests (Thermoschocktests, Temperaturschocktests). , bezeichnet als: TST) Der Zweck des Temperaturschocktests besteht darin, die Konstruktions- und Prozessfehler des Produkts durch die starken Temperaturschwankungen herauszufinden, die über die natürliche Umgebung hinausgehen [Temperaturschwankungen größer als 20℃/min und sogar mehr]. auf 30 ~ 40℃/min], aber es kommt oft vor, dass der Temperaturzyklus mit dem Temperaturschock verwechselt wird. „Temperaturzyklus“ bedeutet, dass im Prozess der Änderung hoher und niedriger Temperaturen die Temperaturänderungsrate festgelegt und gesteuert wird; Die Temperaturänderungsrate des „Temperaturschocks“ (Heiß- und Kälteschock) ist nicht spezifiziert (Rampenzeit), erfordert hauptsächlich die Erholungszeit. Gemäß der IEC-Spezifikation gibt es drei Arten von Temperaturzyklustestmethoden [Na, Nb, NC] . Thermoschock ist einer der drei [Na]-Prüfpunkte [schnelle Temperaturänderung mit vorgegebener Umwandlungszeit; Medium: Luft] sind die Hauptparameter des Temperaturschocks (Thermoschock): Hochtemperatur- und Niedertemperaturbedingungen, Verweilzeit, Rückkehrzeit, Anzahl der Zyklen, bei Hoch- und Tieftemperaturbedingungen und Verweilzeit wird die aktuelle neue Spezifikation zugrunde gelegt von der Oberflächentemperatur des Testprodukts und nicht von der Lufttemperatur im Testbereich des Testgeräts ab.
Thermoschock-Testkammer:
Es wird verwendet, um die Materialstruktur oder das Verbundmaterial in einem Moment unter der kontinuierlichen Umgebung extrem hoher und extrem niedriger Temperaturen auf den Toleranzgrad zu testen, um die chemischen Veränderungen oder physikalischen Schäden zu testen, die durch thermische Ausdehnung und Kontraktion verursacht werden In kürzester Zeit umfassen die anwendbaren Objekte Metall, Kunststoff, Gummi, Elektronik usw. Solche Materialien können als Grundlage oder Referenz für die Verbesserung seiner Produkte verwendet werden.
Mit dem Kälte- und Thermoschock-Testverfahren (Temperaturschock) können folgende Produktfehler festgestellt werden:
Unterschiedlicher Ausdehnungskoeffizient durch die Ablösung der Fuge
Nach dem Cracken tritt Wasser mit unterschiedlichem Ausdehnungskoeffizienten ein
Beschleunigter Test auf Korrosion und Kurzschluss durch eindringendes Wasser
Gemäß der internationalen Norm IEC gelten folgende Bedingungen als häufige Temperaturänderungen:
1. Wenn das Gerät von einer warmen Innenumgebung in eine kalte Außenumgebung gebracht wird oder umgekehrt
2. Wenn das Gerät plötzlich durch Regen oder kaltes Wasser abgekühlt wird
3. Installiert in der Außenluftausrüstung (z. B.: Automobil, 5G, Außenüberwachungssystem, Solarenergie)
4. Unter bestimmten Transport- [Auto, Schiff, Luft] und Lagerbedingungen [nicht klimatisiertes Lager]
Der Temperatureinfluss kann in zwei Arten von Zwei-Box-Auswirkungen und Drei-Box-Auswirkungen unterteilt werden:
Anweisungen: Temperatureinwirkung ist üblich [hohe Temperatur → niedrige Temperatur, niedrige Temperatur → hohe Temperatur], diese Methode wird auch [Zwei-Box-Auswirkung] genannt, ein anderer sogenannter [Drei-Box-Auswirkung], der Prozess ist [hohe Temperatur → normale Temperatur → niedrige Temperatur, niedrige Temperatur → normale Temperatur → hohe Temperatur], eingefügt zwischen der hohen Temperatur und der niedrigen Temperatur, um zu vermeiden, dass zwischen den beiden extremen Temperaturen ein Puffer hinzugefügt wird. Wenn Sie sich die Spezifikationen und Testbedingungen ansehen, gibt es normalerweise einen normalen Temperaturzustand, die hohen und niedrigen Temperaturen werden extrem hoch und sehr niedrig sein, in den militärischen Spezifikationen und Fahrzeugvorschriften werden Sie sehen, dass es einen normalen Temperatureinwirkungszustand gibt.
Bedingungen des IEC-Temperaturschocktests:
Hohe Temperatur: 30, 40, 55, 70, 85, 100, 125, 155℃
Niedrige Temperatur: 5, -5, -10, -25, -40, -55, -65℃
Verweilzeit: 10 Min., 30 Min., 1 Std., 2 Std., 3 Std. (falls nicht angegeben, 3 Std.)
Beschreibung der Temperaturschock-Verweilzeit:
Die Verweildauer des Temperaturschocks hängt neben den Anforderungen der Spezifikation auch vom Gewicht des Testprodukts und der Oberflächentemperatur des Testprodukts ab
Die Angaben zur Thermoschockverweilzeit in Abhängigkeit vom Gewicht lauten:
GJB360A-96-107, MIL-202F-107, EIAJ ED4701/100, JASO-D001 ... Warten wir.
Die Thermoschock-Verweilzeit basiert auf den Spezifikationen zur Oberflächentemperaturkontrolle: MIL-STD-883K, MIL-STD-202H (Luft über dem Testobjekt).
MIL883K-2016-Anforderungen für die Spezifikation [Temperaturschock]:
1. Nachdem die Lufttemperatur den eingestellten Wert erreicht hat, muss das Testprodukt innerhalb von 16 Minuten an der Oberfläche ankommen (die Verweilzeit beträgt mindestens 10 Minuten).
2. Die Auswirkungen hoher und niedriger Temperaturen liegen über dem eingestellten Wert, jedoch nicht über 10 °C.
Folgemaßnahme des IEC-Temperaturschocktests
Grund: Die IEC-Temperaturtestmethode sollte am besten als Teil einer Testreihe betrachtet werden, da einige Fehler nach Abschluss der Testmethode möglicherweise nicht sofort erkennbar sind.
Folgetestaufgaben:
IEC60068-2-17 Dichtheitstest
IEC60068-2-6 Sinusförmige Vibration
IEC60068-2-78 Dauerhaft feuchte Hitze
IEC60068-2-30 Heiß-Feucht-Temperaturzyklus
Bedingungen des Temperatur-Auswirkungstests für Zinn-Whisker (Whisker): Endbearbeitung:
1. - 55 (+ 0 / -) 10 ℃ bitte - 85 (+ / - 0) 10 ℃, 20 min / 1 Zyklus (500 Zyklen erneut prüfen)
1000 Zyklen, 1500 Zyklen, 2000 Zyklen, 3000 Zyklen
2. 85(±5)℃←→-40(+5/-15)℃, 20min/1Zyklus, 500Zyklen
3.-35±5℃←→125±5℃, 7 Minuten verweilen, 500 ± 4 Zyklen
4. - 55 (+ 0 / -) 10 ℃ bitte - 80 (+ / - 0) 10 ℃, 7 Min. verweilen, 20 Min. / 1 Zyklus, 1000 Zyklen
Produktmerkmale der Thermoschockprüfmaschine:
Abtauhäufigkeit: Abtauen alle 600 Zyklen [Testbedingungen: +150℃ ~ -55℃]
Lastanpassungsfunktion: Das System kann sich automatisch an die Last des zu prüfenden Produkts anpassen, ohne dass eine manuelle Einstellung erforderlich ist
Hohe Gewichtsbelastung: Bevor das Gerät das Werk verlässt, verwenden Sie einen Aluminium-IC (7,5 kg) zur Lastsimulation, um sicherzustellen, dass das Gerät den Anforderungen gerecht wird
Position des Temperaturschocksensors: Der Luftauslass und der Rückluftauslass im Testbereich können ausgewählt werden oder es können beide installiert werden, was der MIL-STD-Testspezifikation entspricht. Es erfüllt nicht nur die Anforderungen der Spezifikation, sondern kommt auch näher an den Aufpralleffekt des Testprodukts während des Tests heran, wodurch die Testunsicherheit und die Gleichmäßigkeit der Verteilung verringert werden.
Einführung in die EVA-Folie für Solarmodule 1Um die Effizienz der Stromerzeugung von Solarzellenmodulen zu verbessern, Schutz vor Verlusten durch den Klimawandel zu bieten und die Lebensdauer von Solarmodulen sicherzustellen, spielt EVA eine sehr wichtige Rolle. EVA ist bei Raumtemperatur nicht klebend und antiadhäsiv. Nach dem Heißpressen unter bestimmten Bedingungen während des Solarzellenverpackungsprozesses führt EVA zu einer Schmelzbindung und zur Aushärtung des Klebstoffs. Der ausgehärtete EVA-Film wird vollständig transparent und weist eine recht hohe Lichtdurchlässigkeit auf. Das ausgehärtete EVA hält atmosphärischen Veränderungen stand und ist elastisch. Der Solarzellenwafer wird durch Vakuumlaminierungstechnologie umwickelt und mit dem oberen Glas und dem unteren TPT verbunden.Grundfunktionen der EVA-Folie:1. Befestigen Sie die Solarzelle und die Verbindungskabel, um den Zellisolationsschutz zu gewährleisten2. Führen Sie die optische Kopplung durch3. Sorgen Sie für eine mäßige mechanische Festigkeit4. Stellen Sie einen Wärmeübertragungspfad bereitEVA-Hauptmerkmale:1. Hitzebeständigkeit, Niedertemperaturbeständigkeit, Feuchtigkeitsbeständigkeit und Wetterbeständigkeit2. Gute Haftung auf Metall, Glas und Kunststoff3. Flexibilität und Elastizität4. Hohe Lichtdurchlässigkeit5. Schlagfestigkeit6. NiedertemperaturwicklungWärmeleitfähigkeit von Solarzellenmaterialien: (K-Wert der Wärmeleitfähigkeit bei 27 °C (300'K))Beschreibung: EVA wird für die Verbindung von Solarzellen als Folgemittel verwendet. Aufgrund seiner starken Folgefähigkeit, Weichheit und Dehnung eignet es sich zum Verbinden von zwei Materialien mit unterschiedlichem Ausdehnungskoeffizienten.Aluminium: 229 ~ 237 W/(m·K)Beschichtete Aluminiumlegierung: 144 W/(m·K)Siliziumwafer: 80 ~ 148 W/(m·K)Glas: 0,76 ~ 1,38 W/(m·K)EVA: 0,35W /(m·K)TPT: 0,614 W/(m·K)EVA-Aussehensprüfung: keine Falten, keine Flecken, glatt, durchscheinend, keine Fleckenkante, klare PrägungLeistungsparameter des EVA-Materials:Schmelzindex: Beeinflusst die Anreicherungsrate von EVAErweichungspunkt: Der Temperaturpunkt, bei dem EVA zu erweichen beginntDurchlässigkeit: Es gibt unterschiedliche Durchlässigkeiten für unterschiedliche Spektralverteilungen, was sich hauptsächlich auf die Durchlässigkeit unter der Spektralverteilung von AM1.5 beziehtDichte: Dichte nach der VerklebungSpezifische Wärme: Die spezifische Wärme nach dem Verkleben, die die Größe des Temperaturanstiegswerts widerspiegelt, wenn das EVA nach dem Verkleben die gleiche Wärme aufnimmtWärmeleitfähigkeit: Wärmeleitfähigkeit nach dem Verkleben, was die Wärmeleitfähigkeit von EVA nach dem Verkleben widerspiegeltGlasübergangstemperatur: spiegelt die niedrige Temperaturbeständigkeit von EVA widerBruchzugfestigkeit: Die Bruchzugfestigkeit von EVA nach der Verklebung spiegelt die mechanische Festigkeit von EVA nach der Verklebung widerBruchdehnung: Die Bruchdehnung bei EVA nach der Verklebung spiegelt die Spannung von EVA nach der Verklebung widerWasseraufnahme: Sie wirkt sich direkt auf die Dichtungsleistung von Batteriezellen ausBindungsrate: Die Bindungsrate von EVA wirkt sich direkt auf seine Undurchlässigkeit ausSchälfestigkeit: spiegelt die Bindungsstärke zwischen EVA und Schale widerZweck des EVA-Zuverlässigkeitstests: Bestätigung der Wetterbeständigkeit, der Lichtdurchlässigkeit, der Klebekraft, der Fähigkeit, Verformungen zu absorbieren, der Fähigkeit, physische Stöße zu absorbieren, der Schadensrate des Pressvorgangs von EVA ... Warten wir.Ausrüstung und Projekte für EVA-Alterungstests: Prüfkammer für konstante Temperatur und Luftfeuchtigkeit (hohe Temperatur, niedrige Temperatur, hohe Temperatur und hohe Luftfeuchtigkeit), Hoch- und Niedertemperaturkammer (Temperaturzyklus), Ultraviolett-Prüfmaschine (UV)VA-Modell 2: Glas /EVA/leitendes Kupferblech /EVA/GlasverbundBeschreibung: Mithilfe des elektrischen On-Widerstand-Messsystems wird der niedrige Widerstand in EVA gemessen. Durch die Änderung des Einschaltwiderstandswerts während des Tests wird die Wasser- und Gasdurchdringung von EVA bestimmt und die Oxidationskorrosion von Kupferblech beobachtet.Nach drei Tests mit Temperaturzyklen, Nassgefrieren und Nasshitze ändern sich die Eigenschaften von EVA und Backsheet:( ↑ : hoch, ↓ : runter)Nach drei Tests mit Temperaturzyklen, Nassgefrieren und Nasshitze ändern sich die Eigenschaften von EVA und Backsheet:( ↑ : hoch, ↓ : runter)EVA:Rückseite:Gelb↑Innenschicht gelb ↑Knacken ↑Risse in der Innenschicht und PET-Schicht ↑Zerstäubung ↑Reflexionsvermögen ↓Transparenz ↓
Einführung in die EVA-Folie für Solarmodule 2EVA-UV-Test:Beschreibung: Testen Sie die Dämpfungsfähigkeit von EVA gegenüber ultravioletter (UV) Strahlung. Nach längerer UV-Bestrahlung erscheint die EVA-Folie braun, die Durchdringungsrate nimmt ab ... Und so weiter.EVA-Umwelttestprojekt und Testbedingungen:Feuchte Hitze: 85℃ / RH 85 %; 1.000 StdWärmezyklus: -40℃ ~ 85℃; 50 ZyklenNassgefriertest: -40℃ ~ 85℃ / RH 85 %; 10-fach UV: 280–385 nm/1000 W/200 Stunden (keine Risse und keine Verfärbung).EVA-Testbedingungen (NREL):Hochtemperaturtest: 95℃ ~ 105℃/1000hLuftfeuchtigkeit und Hitze: 85℃/85%R.H./>1000h[1500h]Temperaturzyklus: -40℃←→85℃/>200Zyklen (Keine Blasen, keine Risse, kein Ablösen, keine Verfärbung, keine thermische Ausdehnung und Kontraktion)UV-Alterung: 0,72 W/m2, 1000 Stunden, 60 ℃ (keine Risse, keine Verfärbung) Im Freien: > Kalifornischer Sonnenschein für 6 MonateBeispiel für die Änderung der EVA-Eigenschaften beim Test mit feuchter Hitze:Verfärbung, Zerstäubung, Bräunung, DelaminierungVergleich der EVA-Klebkraft bei hoher Temperatur und Luftfeuchtigkeit:Beschreibung: EVA-Folie bei 65℃/85 % R.H. und 85℃/85 % R.H. Die Verschlechterung der Haftfestigkeit wurde bei 65 °C/85 % relativer Luftfeuchtigkeit unter zwei unterschiedlichen nassen und heißen Bedingungen verglichen. Nach 5000 Teststunden ist der Abbauvorteil nicht hoch, aber EVA bei 85℃/85 % R.H. In der Testumgebung geht die Haftung schnell verloren und die Klebkraft nimmt innerhalb von 250 Stunden deutlich ab.EVA-HAST-Test mit ungesättigtem Druckdampf:Ziel: Da EVA-Folien mehr als 1000 Stunden lang bei 85 °C/85 % relativer Luftfeuchtigkeit getestet werden müssen, was mindestens 42 Tagen entspricht, ist es zur Verkürzung der Testzeit und Beschleunigung der Testgeschwindigkeit erforderlich, die zu erhöhen Umweltbelastungen (Temperatur, Luftfeuchtigkeit und Druck) und beschleunigen den Testprozess in einer Umgebung mit ungesättigter Luftfeuchtigkeit (85 % relative Luftfeuchtigkeit).Testbedingungen: 110℃/85%R.H./264hEVA-PCT-Druckkochertest:Ziel: Der PCT-Test von EVA besteht darin, die Umweltbelastung (Temperatur und Luftfeuchtigkeit) zu erhöhen und EVA einem Benetzungsdampfdruck von mehr als einer Atmosphäre auszusetzen, der zur Bewertung der Dichtwirkung von EVA und des Feuchtigkeitsabsorptionsstatus von EVA verwendet wird.Testbedingung: 121℃/100 % R.H.Testzeit: 80h (COVEME) / 200h (toyal Solar)Zugkrafttest der EVA- und CELL-Verbindung:EVA: 3 ~ 6 MPa Nicht-EVA-Material: 15 MPaZusätzliche Informationen von EVA:1. Die Wasseraufnahme von EVA wirkt sich direkt auf die Dichtleistung der Batterie aus2.WVTR < 1×10-6g/m2/Tag (NREL empfohlenes PV WVTR)3. Der Haftgrad von EVA wirkt sich direkt auf seine Undurchlässigkeit aus. Es wird empfohlen, dass der Adhäsionsgrad von EVA und Zelle mehr als 60 % beträgt.4. Wenn der Bindungsgrad mehr als 60 % erreicht, treten keine thermische Ausdehnung und Kontraktion mehr auf5. Der Bindungsgrad von EVA wirkt sich direkt auf die Leistung und Lebensdauer des Bauteils aus6. Unmodifiziertes EVA hat eine geringe Kohäsionsfestigkeit und neigt zu thermischer Ausdehnung und Kontraktion, was zur Splitterung der Späne führt7. EVA-Schälfestigkeit: längs ≧20N/cm, horizontal ≧20N/cm8. Die anfängliche Lichtdurchlässigkeit der Verpackungsfolie beträgt nicht weniger als 90 % und die interne Abnahmerate von 30 Jahren beträgt nicht weniger als 5 %
Was sind die Sicherheitsschutzsysteme der Hoch- und Niedertemperatur-Testkammer?1, Auslauf-/Überspannungsschutz: Auslaufschutz des Auslaufschutzschalters FUSE.RC elektronischer Überspannungsschutz aus Taiwan2, das interne selbstautomatische Erkennungs- und Schutzgerät des Controllers(1) Temperatur-/Feuchtigkeitssensor: Der Controller regelt die Temperatur und Luftfeuchtigkeit im Testbereich innerhalb des eingestellten Bereichs über den Temperatur- und Feuchtigkeitssensor(2) Übertemperaturalarm des Controllers: Wenn sich das Heizrohr in der Kammer weiter erwärmt und die durch die internen Parameter des Controllers eingestellte Temperatur überschreitet, löst der darin enthaltene Summer einen Alarm aus und muss manuell zurückgesetzt und wiederverwendet werden3, Fehlererkennungs-Steuerschnittstelle: Automatische Erkennungsschutzeinstellungen für externe Fehler(1) Die erste Schicht des Hochtemperatur-Übertemperaturschutzes: Einstellungen für den Übertemperaturschutz der Betriebssteuerung(2) Die zweite Schicht des Hochtemperatur- und Übertemperaturschutzes: Durch die Verwendung eines Übertemperaturschutzes gegen trockenes Brennen wird das System nicht ständig erhitzt, um das Gerät zu verbrennen(3) Wasserbruch- und Luftverbrennungsschutz: Die Feuchtigkeit wird durch einen Übertemperaturschutz gegen Trockenbrennen geschützt(4) Kompressorschutz: Kältemitteldruckschutz und Überlastschutzvorrichtung4, Fehlerschutz: Wenn der Fehler auftritt, unterbrechen Sie die Steuerstromversorgung und die Fehlerursachenanzeige sowie das Alarmausgangssignal5, Automatische Wassermangelwarnung: Die aktive Wassermangelwarnung der Maschine6, Dynamischer Hoch- und Tieftemperaturschutz: Mit den Einstellungsbedingungen zur dynamischen Anpassung des Hoch- und Tieftemperaturschutzwerts
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.