Banner
Heim

Blog

Blog

  • How does the Lab Ultraviolet Light Test Chamber Reproduce Sun Exposure and Rain? How does the Lab Ultraviolet Light Test Chamber Reproduce Sun Exposure and Rain?
    Sep 10, 2025
    Lab Companion UV weathering test chamber is a professional device used to simulate and evaluate the resistance performance of materials under ultraviolet radiation and corresponding climatic conditions for testing outdoor products. Its core function lies in simulating the impact of ultraviolet rays on materials in the natural environment through artificially controlled ultraviolet irradiation, temperature and humidity changes, thereby conducting comprehensive and systematic tests on the durability, color stability and physical properties of materials. In recent years, with the development of technology and the continuous improvement of requirements for material performance, the application of UV weathering test chambers has become increasingly widespread, covering multiple fields such as plastics, coatings, and textiles. The Q8 system independently developed by Lab can simulate the damage caused by sunlight and rain, and complies with multiple international certification standards. It can be programmed to conduct continuous ultraviolet light and rain weather resistance tests 24 hours a day and 7 days a week. It only takes a few days or weeks to reproduce the damage that occurs outdoors in months or even years, including various phenomena such as color change and powdering. Meanwhile, the Q8/UV2/UV3 are equipped with a standard ultraviolet light detection system, which precisely controls the light intensity. Four sets of UV intensity sensors automatically adjust the energy of the lamp tubes based on the aging state to make compensation, significantly reducing the experimental time and ensuring the reproducibility of the system. To more realistically simulate the effects of rainwater scouring and cooling, the ultraviolet test chamber is also equipped with a spray system. The Q8/UV3 model is equipped with 12 sets of water spray devices to simulate mechanical corrosion caused by rainwater erosion. When the sample is heated to a high temperature by an ultraviolet lamp, it is sprayed with cold water to generate intense thermal contraction stress, simulating a sudden downpour in summer. The scouring effect of water flow can simulate the erosion of coatings, paints and other surfaces by rainwater, washing away the aged and decomposed substances on the surface and exposing new material layers to continue aging. A typical test loop is: Under the set irradiance and high temperature, 4 hours of ultraviolet light is used to simulate daytime sun exposure. With the lights off and high humidity maintained, 4 hours of condensation at night is simulated. During this process, short sprays can be inserted regularly to simulate rainfall. By intensifying and cycling these key environmental factors, the ultraviolet light test chamber can reproduce within days or weeks the aging damage that materials would take months or even years outdoors, thus being used for product quality control and durability assessment. However, this test is an accelerated experiment, and its results are correlated with those of real outdoor exposure, rather than being completely equivalent. Different materials and testing standards will select different types of lamp tubes, irradiance, temperatures, and cycle periods to obtain the most relevant prediction results.
    Mehr lesen
  • How to Choose the Appropriate Cooling Method for Test Chambers?
    Sep 09, 2025
    Air cooling and water cooling are two mainstream heat dissipation methods in refrigeration equipment. The most fundamental difference between them lies in the different media they use to discharge the heat generated by the system into the external environment: air cooling relies on air, while water cooling relies on water. This core difference has given rise to numerous distinctions among them in terms of installation, usage, cost and applicable scenarios.   1. Air-cooled system The working principle of an air-cooling system is to force air flow through a fan, blowing it over its core heat dissipation component - the finned condenser, thereby carrying away the heat in the condenser and dissipating it into the surrounding air. Its installation is very simple and flexible. The equipment can operate simply by connecting to the power supply and does not require additional supporting facilities, thus having the lowest requirements for site renovation. This cooling performance is significantly affected by the ambient temperature. In hot summers or high-temperature environments with poor ventilation, due to the reduced temperature difference between the air and the condenser, the heat dissipation efficiency will drop markedly, resulting in a decline in the equipment's cooling capacity and an increase in operational energy consumption. Moreover, it will be accompanied by considerable fan noise during operation. Its initial investment is usually low, and daily maintenance is relatively simple. The main task is to regularly clean the dust on the condenser fins to ensure smooth ventilation. The main operating cost is electricity consumption. Air-cooled systems are highly suitable for small and medium-sized equipment, areas with abundant electricity but scarce water resources or inconvenient water access, laboratories with controllable environmental temperatures, as well as projects with limited budgets or those that prefer a simple and quick installation process.   2. Water-cooled system The working principle of a water-cooling system is to use circulating water flowing through a dedicated water-cooled condenser to absorb and carry away the heat of the system. The heated water flow is usually transported to the outdoor cooling tower for cooling and then recycled again. Its installation is complex and requires a complete set of external water systems, including cooling towers, water pumps, water pipe networks and water treatment devices. This not only fixes the installation location of the equipment, but also places high demands on site planning and infrastructure. The heat dissipation performance of the system is very stable and is basically not affected by changes in the external environmental temperature. Meanwhile, the operating noise near the equipment body is relatively low. Its initial investment is high. Besides electricity consumption, there are also other costs such as continuous water resource consumption during daily operation. The maintenance work is also more professional and complex, and it is necessary to prevent scale formation, corrosion and microbial growth. Water-cooled systems are mainly suitable for large, high-power industrial-grade equipment, workshops with high ambient temperatures or poor ventilation conditions, as well as situations where extremely high temperature stability and refrigeration efficiency are required.   Choosing between air cooling and water cooling is not about judging their absolute superiority or inferiority, but about finding the solution that best suits one's specific conditions. Decisions should be based on the following considerations: Firstly, large high-power equipment usually prefers water cooling to achieve stable performance. At the same time, the geographical climate of the laboratory (whether it is hot), water supply conditions, installation space and ventilation conditions need to be evaluated. Secondly, if a relatively low initial investment is valued, air cooling is a suitable choice. If the focus is on long-term operational energy efficiency and stability, and one does not mind the relatively high initial construction cost, then water cooling has more advantages. Finally, it is necessary to consider whether one has the professional ability to conduct regular maintenance on complex water systems.
    Mehr lesen
  • Working Principle of Lab Companion Air-cooled Mechanical Compression Refrigeration Working Principle of Lab Companion Air-cooled Mechanical Compression Refrigeration
    Sep 06, 2025
    1.Compression The low-temperature and low-pressure gaseous refrigerant flows out of the evaporator and is sucked in by the compressor. The compressor does work on this part of the gas (consuming electrical energy) and compresses it violently. When the refrigerant turns into high-temperature and high-pressure superheated vapor, the temperature of the vapor is much higher than the ambient temperature, creating conditions for heat release to the outside. 2. Condensation The high-temperature and high-pressure refrigerant vapor enters the condenser (usually a finned tube heat exchanger composed of copper tubes and aluminum fins). The fan forces the ambient air to blow over the condenser fins. Subsequently, the refrigerant vapor releases heat to the flowing air in the condenser. Due to cooling, it gradually condenses from a gaseous state into a medium-temperature and high-pressure liquid. At this point, the heat is transferred from the refrigeration system to the outdoor environment. 3. Expansion The medium-temperature and high-pressure liquid refrigerant flows through a narrow channel through the throttling device, which serves to throttle and reduce pressure, similar to blocking the opening of a water pipe with a finger. When the pressure of the refrigerant drops suddenly, the temperature also drops sharply, turning into a low-temperature and low-pressure gas-liquid two-phase mixture (mist). 4. Evaporation The low-temperature and low-pressure gas-liquid mixture enters the evaporator, and another fan circulates the air inside the box through the cold evaporator fins. The refrigerant liquid absorbs the heat of the air flowing through the fins in the evaporator, rapidly evaporates and vaporizes, and reverts to a low-temperature and low-pressure gas. Due to the absorption of heat, the temperature of the air flowing through the evaporator drops significantly, thereby achieving the cooling of the test chamber.   Subsequently, this low-temperature and low-pressure gas is drawn into the compressor again, initiating the next cycle. In this way, the cycle repeats itself without end. The refrigeration system continuously "moves" the heat inside the box to the outside and dissipates the heat into the atmosphere through the fan.
    Mehr lesen
  • High-temperature Oven Maintenance Guide High-temperature Oven Maintenance Guide
    Sep 05, 2025
    1. Daily Maintenance First, clean the interior of the box to remove any residual contaminants from the test (such as dust and sample debris) to prevent them from corroding the inner liner or contaminating subsequent test samples. After the box has completely cooled down, wipe the inner liner, shelves and inner walls with a dry soft cloth. Second, clean the exterior of the box to prevent dust from blocking the ventilation openings and affecting heat dissipation. Especially around the ventilation openings, make sure there is no dust accumulation. Thirdly, check whether the sealing strip of the box door is flat, free of cracks and deformation. Aging or damage to the sealing strip can lead to heat leakage and a decrease in temperature uniformity. Fourth, empty the chamber: Emptying the chamber after use can prevent irrelevant items from being stored in the box for a long time, which may cause contamination or accidents.   2.Regular Maintenance Please be sure to cut off the power supply before cleaning the heating element! Wait for the equipment to cool down completely. Open the rear cover plate and gently remove the dust on the surface of the electric heating tube and the air duct with a vacuum cleaner or a soft brush. Check and clean the fan/impeller. Dust accumulation on the fan can cause dynamic balance imbalance, seriously affecting the uniformity of temperature. Therefore, after the power is cut off, it is necessary to check whether there is any abnormal noise from the fan motor bearings and use a vacuum cleaner to clean the accumulated dust on the fan blades.  Electrical components shall be inspected by professional equipment administrators for any loose, charred or rusted marks on the power lines, circuit breakers, contactors and other terminal blocks. Tighten the loose terminals and replace the damaged parts to ensure the safety and reliability of the electrical connection. The accuracy of the temperature sensor can directly determine the success or failure of the test. It is recommended that every six months or once a year, a standard thermometer that has undergone metrological calibration be used to conduct multi-point comparison calibration of the working temperature range of the equipment. If deviations are detected, parameter corrections or sensor replacements should be made in the control system. Clean the humidity system. If your device has a humidity function, you also need to clean the humidification water pan regularly, replace the wet cloth to prevent the growth of scale and algae, and use deionized water or purified water to reduce scale.   3. Long-term Maintenance after discontinuation First, thoroughly clean the inside and outside of the box, and then completely cover the equipment with a dust cover. Secondly, it is recommended to power on and run the equipment for half an hour to one hour without load once a month. This can remove the moisture inside the box, keep the electrical components active, prevent them from being damaged by moisture, and lubricate the mechanical parts. Finally, during non-power-on periods, it is recommended to completely cut off the main power supply to ensure safety and save standby power consumption.   Please always keep in mind that safety comes first in the above operations. By implementing a systematic maintenance plan, you can extend the service life of the high-temperature oven, ensure the accuracy and repeatability of the test data, and reduce the frequency of equipment failures and maintenance costs.
    Mehr lesen
  • Lab Companion Vacuum Oven Working Principle Lab Companion Vacuum Oven Working Principle
    Sep 02, 2025
    Lab Companion vacuum oven is a precision device that dries materials under low-pressure conditions. Its working principle is based on a core scientific principle: in a vacuum state, the boiling point of a liquid will significantly decrease. Its working process can be divided into three key links:   1. Vacuum creation: By continuously extracting air from the oven chamber through a vacuum pump set, the internal environment is reduced to a level far below atmospheric pressure (typically up to 10Pa or even higher vacuum degrees). This move achieves two purposes: First, it greatly reduces the oxygen content in the cavity, preventing the material from oxidizing during the heating process; The second is to create conditions for the core physical process: low-temperature boiling. 2. Heating provides energy: At the same time as the vacuum environment is established, the heating system (usually using electric heating wires or heating plates) starts to work, providing thermal energy for the materials inside the chamber. Due to the extremely low internal pressure, the boiling points of the moisture or other solvents contained in the material drop sharply. For instance, at a vacuum degree of -0.085MPa, the boiling point of water can be reduced to approximately 45℃. This means that the material does not need to be heated to the conventional 100℃, and the internal moisture can vaporize rapidly at a lower temperature. 3. Steam removal: The water vapor or other solvent vapors produced by vaporization will be released from the surface and interior of the material. Due to the pressure difference within the cavity, these vapors will rapidly diffuse and be continuously drawn away by the vacuum pump, then discharged into the external environment. This process is ongoing continuously, ensuring the maintenance of a dry environment and preventing steam from re-condensing within the cavity, thereby driving the drying reaction to proceed continuously and efficiently towards dehydration.   The "low-temperature and high-efficiency drying" feature of vacuum ovens makes them widely used in the fields of pharmaceuticals, chemicals, electronics, food, and materials science, especially suitable for processing precious, sensitive or difficult-to-dry materials by conventional methods.
    Mehr lesen
  • Einsatz von Hoch- und Niedertemperaturprüfkammern in der Forschung an neuen Energiematerialien Einsatz von Hoch- und Niedertemperaturprüfkammern in der Forschung an neuen Energiematerialien
    Aug 30, 2025
    1. Lithium-Ionen-Batterien: In allen F&E-Phasen von Lithium-Ionen-Batterien, von den Materialien über die Zellen bis hin zu den Modulen, werden Hoch- und Niedertemperaturtests durchgeführt. 2. Materialebene: Bewerten Sie die grundlegenden physikalischen und chemischen Eigenschaften von Grundmaterialien wie positiven und negativen Elektrodenmaterialien, Elektrolyten und Separatoren bei unterschiedlichen Temperaturen. Beispielsweise können Sie das Lithium-Plating-Risiko von Anodenmaterialien bei niedrigen Temperaturen testen oder die thermische Schrumpfrate (MSDS) von Separatoren bei hohen Temperaturen untersuchen. 3. Zellebene: Simulieren Sie den kalten Winter in der Tieftemperaturzone (z. B. -40 °C bis -20 °C), testen Sie den Startvorgang, die Entladekapazität und die Ratenleistung der Batterie bei niedrigen Temperaturen und liefern Sie Daten zur Verbesserung der Leistung bei niedrigen Temperaturen. Zyklische Lade- und Entladetests werden bei hohen Temperaturen (z. B. 45 °C und 60 °C) durchgeführt, um die Alterung zu beschleunigen und die langfristige Lebensdauer und Kapazitätserhaltungsrate der Batterie vorherzusagen. 4. Brennstoffzellen: Protonenaustauschmembran-Brennstoffzellen (PEMFC) stellen extrem hohe Anforderungen an den Umgang mit Wasser und Wärme. Die Kaltstartfähigkeit ist ein entscheidender technischer Engpass für die Kommerzialisierung von Brennstoffzellen. Die Testkammer simuliert eine Umgebung unter dem Gefrierpunkt (z. B. -30 °C), um zu testen, ob das System nach dem Einfrieren erfolgreich gestartet werden kann, und um die mechanischen Schäden durch Eiskristalle an der katalytischen Schicht und der Protonenaustauschmembran zu untersuchen. 5. Photovoltaikmaterialien: Solarmodule müssen im Außenbereich über 25 Jahre lang zuverlässig funktionieren und den harten Belastungen bei Tag und Nacht sowie in allen vier Jahreszeiten standhalten. Durch die Simulation von Temperaturunterschieden zwischen Tag und Nacht (z. B. 200 Zyklen von -40 °C bis 85 °C) können die thermische Ermüdung des Verbindungslötbandes der Batteriezellen, die Alterung und Vergilbung der Verkapselungsmaterialien (EVA/POE) sowie die Verbindungszuverlässigkeit zwischen verschiedenen laminierten Materialien getestet werden, um Delamination und Ausfälle zu verhindern.   Moderne Hoch- und Tieftemperaturprüfkammern sind nicht länger einfache Temperaturwechselkammern, sondern intelligente Testplattformen mit mehreren Funktionen. Die fortschrittliche Testkammer ist mit Beobachtungsfenstern und Testlöchern ausgestattet, sodass Forscher die Proben während Temperaturänderungen in Echtzeit überwachen können.
    Mehr lesen
  • OVEN-256-10W Wassergekühltes Hoch- und Niedertemperatur-Alterungs- und Funktionstestsystem
    Aug 20, 2025
    OFEN-256-10W ist ein hochdichtes Testsystem, das die strengen Leistungstestanforderungen von NVMe-SSDs erfüllt und bis zu 256 Laufwerke gleichzeitig testen kann. Es arbeitet in einem Temperaturbereich von -10 °C bis 85 °C und unterstützt die neueste PCIe Gen5 x4-Schnittstelle sowie die NVMe Ver2.0-Protokollspezifikation. Jeder Testslot bietet eine unabhängige Steuerung der SSD-Versorgungsspannung, einschließlich Spannungsmargining von 0 V bis 14,5 V. Aufbauend auf einem ausgereiften Framework für SSD-Produktionstests bietet das System umfassende Unterstützung für Pilottests in Forschung und Entwicklung – einschließlich EVT, DVT und PVT – sowie Qualitäts- und Zuverlässigkeitstests in der Massenproduktion wie MP, ORT und ODT. Seine benutzerfreundliche Bedienung und die hochflexible Konfiguration verbessern sowohl die Produktionseffizienz als auch die Endproduktqualität in der SSD-Herstellung erheblich. ProdukteigenschaftenTemperaturregelbereich: -10 °C bis 85 °C;Temperaturänderungsrate: 1 °C pro Minute;Unterstützt PCIe Gen5 x4;Die Versorgungsspannung jedes Testports kann über eine Skriptprogrammierung gesteuert werden, mit einem einstellbaren Bereich von 0,6 V – 14,5 V und einer Steuergenauigkeit von 1 mV;Kompatibel mit dem neuesten NVMe Ver2.0-Protokoll und unterstützt benutzerdefinierte NVMe-Befehle;Umfangreiche Skriptbibliothek und ein leistungsstarkes Datenbankanalysesystem;Die LTWolf-Software unterstützt zusätzliche benutzerdefinierte Funktionen basierend auf den Kundenanforderungen.Nahtlose Integration mit MES-Systemen des Kunden, mit optionaler Anpassung für Produktionsdatenmanagementsysteme;Das Firewall-Schutzdesign gewährleistet eine vollständige Isolierung zwischen Testschaltungen und zu testenden Geräten (DUT).Umfassende und bewährte Testalgorithmen, einschließlich EVT, DVT, RDT, TVM und mehr.
    Mehr lesen
  • Lieferstandards für Laborbegleitprodukte
    Aug 07, 2025
    Wichtige Überlegungen zur Geräteübergabe, um einen ordnungsgemäßen Betrieb vor Ort sicherzustellen:1. Installation und Inbetriebnahme der AusrüstungUnser Unternehmen überwacht den Transport und den elektrischen Anschluss der Geräte und stellt so den ordnungsgemäßen Betrieb beim Kunden sicher. Alle Installationen entsprechen strikt den Standard-Abnahmekriterien für UmweltprüfkammernWir führen regelmäßige Prüfungen durch Dritte durch, um die kontinuierliche Einhaltung der Industriestandards zu gewährleisten. Sollte der Kunde nach der Abnahme einen Prüfbericht benötigen, können wir die Prüfung vor Ort durch eine akkreditierte Drittagentur durchführen lassen. 2. Technisches Schulungssystem für Kunden2.1 Grundlegende BedienungsschulungDie Schulung umfasst das Ein- und Ausschalten der Geräte, die Konfiguration von Testprogrammen und Routinewartungsprotokolle. Je nach Branche des Anwenders (z. B. externe Prüfinstitute, Automobilhersteller) wird das Schulungsprogramm individuell an die jeweiligen Betriebsszenarien angepasst. 2.2 Erweiterte WartungsschulungDieses Programm konzentriert sich auf die Entwicklung der Fähigkeiten der Benutzer zur Fehlerbehebung und Reparatur, einschließlich der Diagnose von Feuchtigkeitssystemfehlern in Temperatur-Feuchtigkeits-PrüfkammernDie Schulung umfasst Verfahren zum Austausch wichtiger Komponenten und Vorsichtsmaßnahmen, um ein unabhängiges Kompetenzsystem für die Wartung aufzubauen. 3. Technisches Support-Service-Protokoll3.1 NotfallreaktionsmechanismusEin standardisierter Fehlerreaktionsprozess stellt sicher, dass der technische Support innerhalb von zwei Stunden nach Eingang einer Serviceanfrage eingeleitet wird. Häufige Fehler werden innerhalb von 48 Stunden behoben (für abgelegene Regionen werden alternative Lösungen ausgehandelt). 3.2 Technischer Remote-SupportAusgestattet mit einem professionellen Ferndiagnosesystem, Echtzeit-Videokommunikation oder dediziertem Softwarezugriff ist eine schnelle Fehleridentifizierung möglich. 4. Ersatzteilversorgung und Wartungssicherung4.1 ErsatzteilmanagementplanUm den After-Sales-Support zu verbessern, richten wir für Großabnehmer und Stammkunden spezielle Ersatzteillager ein, um schnell auf Serviceanforderungen reagieren zu können. Jedem Kunden wird ein eigenes Profil zugewiesen, um die Ressourcenzuweisung zu optimieren.Für wichtige Partner (z. B. CRCC, CETC) sind vorrangige Lieferkanäle reserviert, um eine beschleunigte Lieferung von Ersatzteilen sicherzustellen und so die Ausfallzeiten der Geräte zu minimieren. 4.2 WartungsservicerichtlinieWährend der Garantiezeit werden Reparaturen für nicht vom Menschen verursachte Ausfälle kostenlos durchgeführt. Für die Wartung nach Ablauf der Garantiezeit gilt ein transparentes Preissystem mit detaillierten Reparaturplänen und Kostenvoranschlägen, die im Voraus bereitgestellt werden.Unser Unternehmen verfügt über ein professionelles Kundendienstteam und ist bestrebt, das technische Know-how unseres Servicepersonals kontinuierlich zu verbessern. Wir gehen davon aus, dass wir in naher Zukunft auch internationale Kunden vor Ort unterstützen können.
    Mehr lesen
  • Anwendung von Temperatur-Durchflussmessern Anwendung von Temperatur-Durchflussmessern
    Jul 09, 2025
    Ein Temperatur-Durchflussmesser ist ein Präzisionsgerät zur Messung von Gasdurchfluss und -temperatur und wird häufig in der Umweltüberwachung, in Klimaanlagen, der industriellen Fertigung und verwandten Bereichen eingesetzt. Sein Grundprinzip besteht darin, durch den Gasfluss verursachte Temperaturschwankungen zu erfassen, um die Luftgeschwindigkeit und das Luftvolumen genau zu berechnen und dem Anwender so präzise Daten zu liefern. Die Hauptmerkmale des Geräts sind hohe Präzision und schnelle Reaktion. In der Regel mit fortschrittlichen Sensoren ausgestattet, erfasst es selbst kleinste Änderungen der Durchflussrate und liefert Echtzeit-Feedback. Seine Messgenauigkeit bleibt auch unter komplexen Umgebungsbedingungen außergewöhnlich, was insbesondere für industrielle Anwendungen mit strenger Kontrolle von Luftstrom und Temperatur entscheidend ist. Die Bedienung von Temperatur-Durchflussmessern ist zudem relativ einfach – Benutzer benötigen lediglich eine grundlegende Konfiguration, um die benötigten Daten zu erhalten. Dieses benutzerfreundliche Design erleichtert sowohl Profis als auch Laien die Bedienung. Viele moderne Modelle verfügen zudem über digitale Anzeigen mit intuitiver Benutzeroberfläche, die einen schnellen Überblick über den aktuellen Status ermöglichen und die Benutzerfreundlichkeit verbessern. Das Gerät zeichnet sich durch hervorragende Stabilität aus und liefert über lange Zeiträume hinweg konsistente Messungen ohne nennenswerte Abweichungen, was die Datenzuverlässigkeit gewährleistet. Dank des kontinuierlichen technologischen Fortschritts verfügen viele Geräte heute über integrierte Datenspeicher- und -übertragungsfunktionen, die es Benutzern ermöglichen, historische Daten nach dem Test zu überprüfen und zu analysieren, um fundierte Entscheidungen zu treffen. Zusammenfassend lässt sich sagen, dass das thermische Anemometer aufgrund seiner hohen Präzision, schnellen Reaktion, benutzerfreundlichen Bedienung und hervorragenden Stabilität in verschiedenen Branchen zu einem unverzichtbaren Werkzeug geworden ist. Im Alltag und im Berufsleben steigert die Beherrschung dieses Instruments nicht nur die Arbeitseffizienz, sondern bietet auch eine wichtige Unterstützung für wissenschaftliche Forschung und technische Anwendungen. Als unverzichtbare Messtechnik in der modernen Wissenschaft spielt es eine zentrale Rolle für den technologischen Fortschritt.
    Mehr lesen
  • Auswahl des Aufstellungsortes der Schnell-Temperatur-Wechsel-Prüfkammer Auswahl des Aufstellungsortes der Schnell-Temperatur-Wechsel-Prüfkammer
    Jun 27, 2025
    Auswahl des Aufstellungsortes der Schnell-Temperatur-Wechsel-Prüfkammer:Der Abstand zur angrenzenden Wand kann die Rolle und die Eigenschaften der Klimaprüfkammer optimal ausspielen. Es sollten eine Langzeittemperatur von 15 bis 45 °C und eine relative Luftfeuchtigkeit von über 86 % gewählt werden.Die Betriebstemperatur am Aufstellungsort darf sich nicht wesentlich ändern. Die Installation sollte auf einer ebenen Fläche erfolgen (benutzen Sie während der Installation eine Wasserwaage, um das Niveau auf der Straße zu bestimmen).Es sollte an einem Ort ohne Sonneneinstrahlung installiert werden. Es sollte an einem Ort mit ausgezeichneter natürlicher Belüftung installiert werden.Es sollte in Bereichen installiert werden, in denen brennbare Materialien, explosive Produkte und Hochtemperatur-Wärmequellen vermieden werden.Es sollte an einem Ort mit weniger Staub installiert werden.Installieren Sie es möglichst nahe am Schaltnetzteil des Stromversorgungssystems.
    Mehr lesen
  • Was soll ich tun, wenn die Hoch- und Niedertemperaturprüfkammer Probleme hat? Was soll ich tun, wenn die Hoch- und Niedertemperaturprüfkammer Probleme hat?
    Jun 23, 2025
    Hoch- und Niedertemperaturprüfkammer Bei der Verwendung können verschiedene Probleme auftreten. Nachfolgend finden Sie eine Zusammenfassung möglicher Fehler und ihrer Ursachen aus verschiedenen Perspektiven:1. KernsystemfehlerTemperatur außer KontrolleGrund: Die PID-Regelparameter sind nicht im Gleichgewicht, die Umgebungstemperatur überschreitet den Auslegungsbereich des Geräts, Temperaturstörungen in mehreren Zonen.Fall: In einer Werkstatt mit Sonderumgebung kommt es aufgrund der hohen Außentemperatur zu einer Überlastung des Kühlsystems, was zu einer Temperaturdrift führt.Die Luftfeuchtigkeit ist anormalGrund: Eine schlechte Wasserqualität bei der Befeuchtung führt zu Kalkablagerungen und Düsenverstopfungen, zum Ausfall der piezoelektrischen Platte des Ultraschallbefeuchters und zu einer unvollständigen Regeneration des Entfeuchtungs-Trockenmittels.Besonderes Phänomen: Beim Test mit hoher Luftfeuchtigkeit kommt es zu einer Rückkondensation, die dazu führt, dass die tatsächliche Luftfeuchtigkeit in der Box niedriger ist als der eingestellte Wert.2. Mechanische und strukturelle ProblemeDer Luftstrom ist ungeordnetLeistung: Im Probenbereich herrscht ein Temperaturgradient von über 3 °C.Grundursache: Das kundenspezifische Probengestell veränderte den ursprünglich konzipierten Luftkanal und die Ansammlung von Schmutz auf den Radialventilatorflügeln führte zur Zerstörung des dynamischen Gleichgewichts. DichtungsfehlerNeuer Fehler: Die Magnetkraft der elektromagnetischen Türdichtung lässt bei niedrigen Temperaturen nach und der Silikon-Dichtungsstreifen wird nach -70 °C spröde und reißt.3. Elektrik und SteuerungIntelligenter SteuerungsfehlerSoftwareebene: Nach dem Firmware-Upgrade tritt ein Fehler bei der Einstellung der Temperatur-Totzone auf und der Überlauf der historischen Daten führt zum Absturz des Programms.Hardwareebene: Ein Ausfall des Halbleiterrelais SSR führt zu kontinuierlicher Erwärmung und die Buskommunikation ist elektromagnetischen Störungen durch den Wechselrichter ausgesetzt.SicherheitslückenVersteckte Gefahren: der synchrone Ausfall des dreifachen Temperaturschutzrelais und der Fehlalarm durch den Ablauf der Kalibrierung des Kältemitteldetektors.4. Herausforderungen besonderer ArbeitsbedingungenSpezifischer TemperaturschockProblem: Bei einer Umwandlung von -40 °C auf +150 °C kommt es zu einer schnellen Spannungsrissbildung an der Schweißnaht des Verdampfers, der Unterschied im Wärmeausdehnungskoeffizienten führt zum Versagen der Dichtung des Beobachtungsfensters.LangzeitbetriebsdämpfungLeistungsabfall: Nach 2000 Stunden Dauerbetrieb führt der Verschleiß der Kompressorventilplatte zu einer Verringerung der Kälteleistung um 15 % und zu einer Abweichung des Widerstandswerts des Keramikheizrohrs.5. Auswirkungen auf Umwelt und InstandhaltungInfrastrukturanpassungFall: Die Leistungsschwankungen des PTC-Heizgeräts, die durch Schwankungen der Versorgungsspannung und den Wasserschlageffekt des Kühlwassersystems verursacht wurden, beschädigten den Plattenwärmetauscher.Blinde Flecken bei der vorbeugenden WartungLektion: Das Ignorieren des Überdrucks der Box führt dazu, dass Wasser in die Lagerkammer eindringt und sich Biofilm bildet und das Kondensatablaufrohr verstopft.6. Schwachstellen neuer TechnologienNeue KältemittelanwendungHerausforderungen: Probleme mit der Systemölkompatibilität, nachdem R448A R404A ersetzt hat, und Hochdruckdichtungsprobleme bei unterkritischen CO₂-Kältesystemen.Risiken der IoT-IntegrationFehler: Das Fernsteuerungsprotokoll wird böswillig angegriffen, was zu Programmmanipulationen und Cloud-Speicherfehlern führt, was wiederum den Verlust der Testbeweiskette zur Folge hat.StrategieempfehlungenIntelligente Diagnose: Konfigurieren Sie den Schwingungsanalysator, um den Ausfall des Kompressorlagers vorherzusagen, und verwenden Sie eine Infrarot-Wärmebildkamera, um die elektrischen Verbindungspunkte regelmäßig zu scannen.Zuverlässiges Design: Wichtige Komponenten wie der Verdampfer bestehen aus Edelstahl SUS316L, um die Korrosionsbeständigkeit zu verbessern, und dem Steuerungssystem werden redundante Temperaturregelmodule hinzugefügt.Wartungsinnovation: Implementieren Sie einen dynamischen Wartungsplan basierend auf den Betriebsstunden und richten Sie ein jährliches System zur Prüfung der Kältemittelreinheit ein.Die Lösungen für diese Probleme müssen in Kombination mit dem spezifischen Gerätemodell, der Einsatzumgebung und der Wartungshistorie analysiert werden. Es wird empfohlen, einen kollaborativen Wartungsmechanismus einzurichten, der den Gerätehersteller, externe Prüfinstitute und technische Benutzerteams einbezieht. Für wichtige Testobjekte wird empfohlen, ein Hot-Standby-System mit zwei Maschinen zu konfigurieren, um die Kontinuität der Tests zu gewährleisten.
    Mehr lesen
  • Welche Lieferstandards gelten für Lab Companion? Welche Lieferstandards gelten für Lab Companion?
    Jun 23, 2025
    (1) Installation und Inbetriebnahme der GeräteVor-Ort-Service: Technisches Personal liefert die Waren kostenlos und übernimmt die mechanische Montage, die elektrische Verkabelung und die Fehlersuche. Die Fehlersuchparameter müssen den in der technischen Vereinbarung mit dem Kunden festgelegten Werten wie Temperatur, Luftfeuchtigkeit, Salznebelablagerung und anderen Indikatoren entsprechen.Abnahmekriterien: Legen Sie einen Messbericht eines Drittanbieters vor. Nicht qualifizierte Geräte müssen zurückgegeben oder direkt ersetzt werden. Beispielsweise muss die Regentestbox eine 100%ige Abnahme bestehen.(2) KundenschulungssystemBedienungsschulung: umfasst das Starten und Stoppen der Ausrüstung, die Programmeinstellung und die tägliche Wartung, angepasst an verschiedene Benutzerszenarien wie Qualitätsprüfinstitute und Automobilunternehmen.Umfassende Wartungsschulung: einschließlich Fehlerdiagnose (z. B. Fehlerbehebung des Feuchtigkeitssystems in einer Hoch- und Niedertemperatur- und Feuchtigkeitsprüfkammer) und Austausch von Ersatzteilen, um die Fähigkeit der Kunden zur selbstständigen Wartung zu verbessern.(3) Technischer Support und ReaktionSofortige Reaktion: Reagieren Sie innerhalb von 15 Minuten auf Reparaturanfragen und beheben Sie Routinefehler innerhalb von 48 Stunden (Verhandlungen mit abgelegenen Gebieten).Ferndiagnose: Lokalisieren Sie das Problem (z. B. eine abnormale Staubkonzentration in der Sandprüfkammer) schnell mithilfe einer Videoanleitung oder einer Fernzugriffssoftware.(4) Ersatzteilversorgung und WartungErstellen Sie einen Ersatzteilplan, geben Sie der Versorgung mit Verschleißteilen durch Kooperationseinheiten (wie z. B. China Railway Inspection and Certification Center, China Electronics Technology Group) Vorrang und reduzieren Sie Ausfallzeiten.Nicht manuelle Schäden sind während der Garantiezeit kostenlos und kostenpflichtige Dienste werden nach der Garantiezeit mit transparenten Gebühren bereitgestellt.
    Mehr lesen
1 2 3 4 5 6 7 8 9 10 19 20
Insgesamt 20Seiten

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns