Banner
Heim

Temperaturtestkammer

Temperaturtestkammer

  • Green & Intelligent: Trends in High-Low Temperature Test Chamber Industry and Labcompanion's Practices Green & Intelligent: Trends in High-Low Temperature Test Chamber Industry and Labcompanion's Practices
    Jan 09, 2026
    High and low temperature test chambers are the "invisible guardians" in industrial production and scientific research innovation. They can simulate extreme environments to test product reliability, from small mobile phone chips to large automotive components. Starting from basic cognition, core parameters, industry trends, and usage misunderstandings, this article interprets their value and Labcompanion's practice. I. Basic Cognition: The "Environmental Tester" for Product Quality High and low temperature test chambers simulate natural environments by artificially regulating temperature, exposing performance defects of products under extreme temperature conditions in advance, helping enterprises optimize designs before mass production and avoid recall risks. Their applications cover electronic and electrical, medical, automotive, scientific research institutions and other fields, with test objects including PCB boards, monitors, automotive sensors, etc. II. Key Parameters: Core Indicators for Selecting the Right Equipment Core parameters determine equipment adaptability, with key indicators as follows: 1. Temperature control accuracy (deviation ±0.1℃~±0.5℃, high precision suitable for scientific research/high-end manufacturing); 2. Temperature uniformity (high-quality equipment ≤±2℃, high-end models ≤±1℃); 3. . Temperature range (conventional -40℃~150℃, special scenarios up to -80℃~200℃+); 4. Temperature change rate (10℃/min+ rapid temperature change can shorten test cycles); 5.  Volume (from dozens of liters of desktop to dozens of cubic meters of walk-in, suitable for different scenarios). III. Industry Trends: Green, Intelligent and Customized as the Mainstream With industry upgrading, three major trends highlight competitiveness: 1. Green energy saving: Adopting environmentally friendly refrigerants, optimized refrigeration cycle and other technologies, energy consumption can be reduced by 20%+; 2. Intelligent interconnection: Realizing remote monitoring, automatic data collection and analysis, suitable for digital management; 3. Customization: Providing personalized designs for medical sterility, new energy explosion-proof and other needs. IV. Usage Misunderstandings: Four Major Pitfalls to Avoid 1. The temperature change rate is not the faster the better; it needs to match product characteristics and test standards; 2. Uniformity cannot be ignored; uneven temperature field will lead to result deviation; 3. Regular maintenance is indispensable, otherwise it will affect accuracy and increase energy consumption; 4. The load capacity should not exceed 30% of the chamber volume to avoid damaging temperature field uniformity. V. Labcompanion: A Quality Practitioner Following Trends Labcompanion focuses on R&D and practices the three major trends: In terms of green energy saving, it adopts environmentally friendly refrigerant R449A and cascade refrigeration + CO₂ working fluid technology, reducing energy consumption by 28%~38% and obtaining provincial energy-saving certification; In terms of intelligence, it is equipped with an AI intelligent control system, supporting remote monitoring and automatic data analysis, with preset 200+ test programs; In terms of customization, it provides customized temperature range, chamber structure, etc., covering the needs of various industries. Its equipment has excellent core parameters: temperature control accuracy ±0.1℃~±0.3℃, uniformity ≤±1.5℃, temperature range -80℃~200℃. Relying on 20 years of experience, it provides full-process services from demand analysis to maintenance. High and low temperature test chambers bear the responsibility of ensuring product quality. Accurately understanding core information can help select equipment and avoid pitfalls. Labcompanion creates trend-compliant equipment through technological innovation, providing support for quality upgrading in various industries.
    Mehr lesen
  • Industry-Specific Selection Guide: Key Technical Specs for Temperature Test Chambers Industry-Specific Selection Guide: Key Technical Specs for Temperature Test Chambers
    Jan 05, 2026
    1. Electronics Industry (Chips, Components) Q: Does inner tank size and material affect testing for small precision components? A: Select 36-100L small-volume inner tank (reduces temperature fluctuation); prioritize 304 stainless steel (corrosion-resistant, uniform heat conduction). Confirm multi-point temperature collection (≥8 points) support. Hongzhan offers customizable zoned temperature measurement, synchronous data upload, and chip batch testing compatibility.   Q: Will the refrigeration system degrade after 72 hours of continuous high-intensity testing? A: Focus on refrigeration configuration: choose two-stage cascade refrigeration (more stable than single-stage) with imported compressors (Danfoss/Coppa). Hongzhan equipment features MTBF of 20,000 hours, no continuous operation attenuation, and overload protection.   2. New Energy Industry (Batteries, Charging Piles) Q: For battery testing with explosion-proof requirements, how to judge equipment explosion-proof rating and safety design? A: Must comply with ATEX explosion-proof certification. Inner tank equipped with explosion-proof pressure relief valve and inert gas inlet; circuit adopts flameproof design. Hongzhan customizes Ex d IIB T4 explosion-proof test chambers, suitable for lithium battery thermal runaway simulation.   Q: Can equipment heating/cooling rate meet large-capacity battery pack testing? Is energy consumption high? A: Select custom models ≥1000L with temperature change rate ≥10℃/min; adopt CO₂ natural refrigerant system (38% lower energy consumption than traditional). Hongzhan optimizes refrigeration circuits for new energy, maintaining stable rates under heavy loads and saving over 10,000 yuan in annual electricity costs.   3. Aerospace Industry (Components, Aircraft Assemblies) Q: Can temperature uniformity meet standards in extreme temperature ranges (-80℃ to 200℃)? A: Select equipment with "PID self-tuning + fuzzy control"; inner tank adopts honeycomb air duct design (reduces temperature difference). Hongzhan maintains uniformity ≤1.5℃ even at -80℃, passes GJB military standard certification, suitable for simulating extreme high-altitude environments.   Q: Can equipment connect to high-level data acquisition systems? Is data transmission stable? A: Confirm RS485/Ethernet interface support, compatibility with LabVIEW/Excel, data sampling rate ≥1 time/second, and storage capacity ≥1 million records. Hongzhan equipment has electromagnetic shielding, ensuring interference-free transmission and seamless integration with aerospace research systems.   4. Medical Industry (Consumables, Devices) Q: Medical consumables testing requires high inner tank cleanliness; what are the relevant equipment designs? A: Inner tank made of 316L medical-grade stainless steel (sterilization efficiency ≥99%), with 120℃ automatic high-temperature sterilization; air duct designed with no dead corners (prevents dust accumulation). Hongzhan cleanroom test chambers comply with ISO 13485, suitable for syringe and medical sensor sterility testing.   Q: Test data needs 5+ years of traceability; do equipment storage and export functions meet requirements? A: Must have audit trail, encrypted data storage for ≥5 years, one-click export to PDF/Excel, and tamper-proof design. Hongzhan equipment is equipped with industrial-grade storage modules, meeting FDA/CE regulatory requirements, facilitating medical device registration.   Industry-Specific Selection Core Precise matching with industry-specific demands is key: Electronics: Focus on precise temperature control and small-volume adaptation New Energy: Prioritize explosion-proof, wide temperature range, and large-load capabilities  Aerospace: Emphasize extreme temperature resistance and high-level data connectivity  Medical: Highlight compliance, cleanliness, and data traceability     Avoid blind pursuit of uniform parameters; conduct targeted screening per industry standards (GJB, ISO 13485). Guangdong Hongzhan Technology Equipment provides industry-customized solutions, covering core technical requirements across fields. With professional certifications and compatible designs, it helps customers avoid selection pitfalls and achieve precise matching.
    Mehr lesen
  • Equipment Selection Guide: Ovens vs. Temperature Test Chambers Equipment Selection Guide: Ovens vs. Temperature Test Chambers
    Jan 04, 2026
        Equipment selection directly impacts efficiency, quality and data reliability. Standard ovens, precision ovens and temperature-humidity test chambers have distinct functional boundaries and application scenarios. Many enterprises suffer cost waste or functional insufficiency due to improper selection. This guide clarifies selection logic, breaks down matching schemes, avoids common pitfalls and provides precise guidance based on practical scenarios. 1. Core Selection Logic Adhere to the four-step framework of defining demand types → verifying temperature accuracy → supplementing environmental requirements → matching budget to clarify equipment selection boundaries. Step 1: Define Demand Types Choose oven series for process applications (drying, curing, etc.). Choose temperature-humidity test chambers for environmental reliability verification (extreme temperature variation, humidity exposure). Note: Ovens lack cooling function and cannot replace test chambers. Step 2: Verify Temperature Control Accuracy Standard ovens: Suitable for applications allowing ±5℃ temperature deviation. Precision ovens: Required for high-precision scenarios (±1℃ tolerance, e.g., electronic packaging, medical sterile drying). Temperature-humidity test chambers: Ideal for extreme environment testing, with accuracy up to ±1℃ (even ±0.5℃ for premium models). Step 3: Supplement Environmental Requirements Ovens: Applicable for ambient temperature heating only. Temperature-humidity test chambers (including humidity-controlled models): Necessary for low-temperature (-20℃ ~ -70℃), cyclic temperature variation or humidity control (e.g., 85℃/85%RH) applications. Note: Precision ovens do not support cooling or humidity control functions. Step 4: Match Budget Standard ovens (thousands of CNY): For basic drying tasks with limited budget. Precision ovens (10,000 ~ 100,000 CNY): For processes requiring high precision and stability. Temperature-humidity test chambers (100,000 ~ hundreds of thousands of CNY): For professional environmental testing; reserve budget for operation and maintenance. 2. Typical Application Scenarios: Demand-Equipment Matching This section breaks down matching schemes for three key sectors (electronics, automotive, medical & research) to provide intuitive references. Electronics Industry Simple component drying (±5℃ tolerance): Standard oven PCB solder paste curing (±0.5℃ accuracy, ±1℃ uniformity, multi-stage temperature control): Precision oven Chip cyclic testing (-40℃ ~ 125℃, data traceability required): Temperature-humidity test chamber Automotive Industry Basic part drying (±5℃ tolerance): Standard oven Sensor 24-hour aging test at 85℃ (±0.3℃ accuracy): Precision oven Battery pack rapid temperature cycling test (-40℃ ~ 85℃): Rapid temperature change test chamber Medical & Research Industry Routine consumable drying (±5℃ tolerance): Standard oven Syringe & catheter sterile drying (±0.5℃ accuracy, clean inner chamber, data traceability): Precision oven with 316 stainless steel enclosure Plastic material thermal stability study (-30℃ ~ 150℃): Temperature-humidity test chamber 3. Common Selection Pitfalls: Risk Avoidance Misconceptions often lead to wrong selections. Focus on avoiding these three key pitfalls: Pitfall 1: Using standard ovens instead of precision ovens Short-term cost reduction may cause higher product rejection rates and increased long-term costs. Solution: Always choose precision ovens for applications requiring ±1℃ accuracy; improved yield will offset the incremental cost. Pitfall 2: Using precision ovens for temperature cycling tests Ovens lack cooling capability, leading to test failure. Solution: Directly select temperature-humidity test chambers for low-temperature or cyclic temperature variation tests. Pitfall 3: Blindly pursuing high-spec test chambers Results in cost waste and underutilization of functions. Solution: Select equipment strictly based on actual test parameters to balance demand and budget. Conclusion The core of equipment selection lies in precise demand matching. Clarifying demand types and core parameters, combining scenario requirements with budget planning, and avoiding common pitfalls will maximize equipment value, support production quality improvement and boost R&D efficiency.
    Mehr lesen
  • How to avoid operation mistakes with Industrial Vacuum Ovens? Must-read usage guide for beginners!
    Dec 08, 2025
    I. Pre-Use Preparation 1. Equipment Inspection: Ensure the oven shell is well grounded, with no damage to the power cord and secure connections; check that vacuum valves and sealing rings are intact without aging or air leakage; verify that the vacuum pump oil level is within the scale range and the oil is clear and free of impurities. 2. Material Preparation: Materials to be dried must comply with the oven's applicable scope (flammable, explosive, and corrosive materials are prohibited). Place materials evenly in the baking tray, avoiding excessive stacking (not exceeding 1/2 of the tray height), and ensure there are ventilation gaps between materials and the oven wall, as well as between materials. 3. Environment Check: Ensure no flammable or explosive items are around the oven, the ventilation is good, and a maintenance space of at least 50cm is reserved; check that instruments such as the temperature controller and vacuum gauge are in zero state II. Operation Procedure 1. Loading Materials into the Oven Open the oven door, place the baking tray with materials steadily on the inner shelf, ensuring the tray is firmly positioned; close the oven door and tighten the door latch to ensure good sealing. 2. Vacuum System Operation • Open the vacuum valves (first the oven's own valve, then the vacuum pump valve) and start the vacuum pump. • Monitor the vacuum gauge; when the vacuum degree reaches the process requirement (usually -0.08~-0.1MPa, subject to material requirements), first close the vacuum pump valve, then turn off the vacuum pump to maintain the vacuum state. 3. Temperature Control Setting and Operation • Connect the oven's main power supply, turn on the temperature controller, and set the "target temperature" and "holding time" according to process requirements (for stepwise heating, set parameters for each stage in sequence). • Turn on the heating switch; the oven enters the heating stage. Check that the displayed temperature of the controller matches the actual temperature (if a temperature probe is available) to ensure stable heating. • When the target temperature is reached, the system automatically enters the holding stage. During this period, regularly check the vacuum degree; if it is lower than the set value, repeat the vacuuming operation. 4. Shutdown and Material Retrieval • After the holding period ends, turn off the heating switch and wait for the internal temperature to drop to a safe range (usually ≤50℃, subject to material properties). • Slowly open the vacuum relief valve; after the vacuum gauge returns to zero, open the oven door and retrieve the materials (wear high-temperature resistant gloves to avoid scalding). • Turn off the main power supply, clean residual debris inside the oven, and keep the equipment clean. III. Key Notes • Heating is strictly prohibited under vacuum conditions. Vacuuming must be done before heating to avoid abnormal internal pressure. • If abnormal noise, odor, or instrument malfunction occurs during heating, immediately shut down and cut off power, and troubleshoot before reuse. • Flammable and explosive materials must undergo safety testing. They can only be used under supervision after confirming no risks, and the oven must be equipped with explosion-proof devices. • If the vacuum pump overheats or leaks oil during operation, shut it down for inspection promptly. Replace the pump oil regularly (recommended every 300 hours). IV. Daily Maintenance 1. After daily use, clean the inner wall and shelves of the oven, and wipe the surface of the sealing ring to prevent foreign objects from affecting the sealing effect. 2. Weekly, check the flexibility of the vacuum valve switch and apply anti-rust lubricating oil to moving parts such as door hinges. 3. Monthly, calibrate the temperature controller and vacuum gauge to ensure accurate parameters; inspect the appearance of heating tubes and replace them promptly if damaged.
    Mehr lesen
  • Small Rapid Temperature Change (Wet Heat) Test Chamber
    Nov 01, 2025
    In response to the testing and R&D requirements of electronic components such as semiconductors and automotive electronics, Lab Companion has developed a smaller capacity small rapid temperature change (wet heat) test chamber. While maintaining the advantages of standard rapid temperature change test chambers, it can also meet the needs of customers who have requirements for space size, with a single-phase 220VAC voltage specification. It can also meet the equipment usage requirements of customers in civilian office areas such as research institutions and universities. Its main features are as follows: 1. It has powerful heating and cooling performance 2. Heating rate: 15℃/min; Cooling rate: 15℃/min 3. (Temperature range: -45℃ to +155℃) 4. Single-phase 220VAC, meeting the electricity demands of more customers 5. Single-phase 220VAC, suitable for industrial and civil power supply specifications, can meet the equipment power demands of customers in civil office areas such as research institutions and universities. 6. The body is small and exquisite, with a compact structure and easy to move 7. The miniaturized structure design of the test chamber can effectively save configuration space. 8. The inner tank volume is 100L, the width is 600mm, the depth is less than 1400mm, and the product volume is less than 1.1m ³. It is suitable for the vast majority of residential and commercial elevators in China (GB/T7025.1). 9. The standard universal wheels enable the product to move freely at the installation site. 10. Standard air-cooled specification is provided, facilitating the movement and installation of the product 11. At the same time, it saves customers the cost and space of configuring cooling towers. 12. A more ergonomic operation touch screen design 13. Through the multi-angle adjustment of the touch screen, it can meet the operation needs and provide the best field of vision for users of different heights, making it more convenient and comfortable. 14. Energy-saving cold output temperature and humidity control system, with dual PID and water vapor partial pressure control, features mature technology and extremely high precision. 15. Network control and data acquisition can be carried out through the interface (RS-485/GPIB/Web Lan/RS-232C). 16. It is standard-equipped with left and right cable holes (50mm), which facilitates the connection of power on the sample and the conduct of multiple measurements. 17. The controller adopts a color LCD touch screen, which is simple and convenient to operate 18. Through the controller, two control methods, fixed value and program, can be selected to adapt to different applications. 19. The program control can be set to 100 modes, with 99 steps for each mode. Repeat the loop up to 999 times. 20. Multiple languages can be easily switched (Simplified Chinese, English), and test data can be stored on a USB flash drive.
    Mehr lesen
  • How to Prevent Condensation when Conducting Low-temperature Tests in a Temperature Test Chamber
    Oct 30, 2025
    When conducting low-temperature tests in a temperature test chamber, preventing condensation is a crucial and common issue. Condensation not only affects the accuracy of test results, but may also cause irreversible damage to products, such as short circuits, metal corrosion, and degradation of material performance.   The essence of condensation is that when the surface temperature of the product drops below the "dew point temperature" of the ambient air, water vapor in the air condenses into liquid water on the product surface. Based on this principle, the core idea for preventing condensation is to avoid the surface temperature of the product being lower than the dew point temperature of the ambient air. The specific methods are as follows:   Controlling the rate of temperature change is the most commonly used and effective method. By slowing down the rate of cooling or heating, the temperature of the product can keep up with the changes in ambient temperature, thereby reducing the temperature difference between the two and preventing the surface temperature of the product from falling below the dew point. 2. Use dry air or nitrogen to directly reduce the absolute humidity of the air inside the test chamber, thereby significantly lowering the dew point temperature. Even if the surface of the product is very cold, as long as the dew point of the ambient air is lower, condensation will not occur. It is usually used for products that are extremely sensitive to moisture, such as precision circuit boards and aerospace components, etc. 3. Local heating or insulation can ensure that the surface temperature of key components (such as circuit boards and sensors) is always above the dew point, which is more suitable for products with complex structures where only certain areas are sensitive to humidity. 4. Skillfully arrange the temperature cycle through programming to avoid exposing the product at the stage when condensation is most likely to occur. After the test is completed, do not directly open the box door in a normal temperature and humidity environment. Dry gas should first be introduced into the box and the temperature should be slowly raised to room temperature. After the product temperature has also risen, the box can be opened and taken out.   For a typical low-temperature test, the following process can be followed to prevent condensation to the greatest extent First, place the product and the test chamber in a standard laboratory environment for a sufficient period of time to stabilize their condition. Subsequently, within the range close to room temperature to "0°", set up one or more short-term insulation platforms. Or maintain it at the target low temperature for a sufficient period of time, during which the temperature inside and outside the product is consistent, and usually no new condensation will form. Also, set a heating rate that is slower than the cooling rate. Set up an insulation platform at the initial stage of temperature rise and when approaching the ambient temperature. After the temperature rise is completed, do not open the door immediately. Keep the box door closed and let the product stand in the box for "30 minutes to 2 hours" (depending on the heat capacity of the product), or introduce dry air into the box to accelerate the equalization process. After confirming that the product temperature is close to the ambient temperature, open the box door and take out the product.   The best practice is to use the above methods in combination. For instance, in most cases, "controlling the temperature variation rate" combined with "optimizing the test program (especially during the recovery stage)" can solve 90% of the condensation problems. For military or automotive electronics tests with strict requirements, it may be necessary to simultaneously stipulate the temperature variation rate and require the introduction of dry air.
    Mehr lesen
  • Dragon Heat Flow Meter Temperature Control Test
    Oct 29, 2025
    Temperature control tests are usually conducted under two conditions: no-load (without sample placement) and load (with standard samples or actual samples being tested placed). The basic testing steps are as follows:   1. Preparatory work: Ensure that the heat flow meter has been fully preheated and is in a stable state. Prepare high-precision temperature sensors that have undergone metrological calibration (such as multiple platinum resistance PT100), and their accuracy should be much higher than the claimed indicators of the heat flow meter to be measured. 2. Temperature uniformity test: Multiple calibrated temperature sensors are arranged at different positions within the working area of the heat flow meter's heating plate (such as the center, four corners, edges, etc.). Set one or more typical test temperature points (such as -20°C, 25°C, 80°C). After the system reaches thermal stability, simultaneously record the temperature values of all sensors. Calculate the maximum, minimum and standard deviation of these readings to evaluate the uniformity. 3. Temperature control stability and accuracy test: Fix a calibrated temperature sensor at the center of the heating plate (or closely attach it to the built-in sensor of the instrument). Set the target temperature and start the temperature control. Record the entire process from the start to reaching the target temperature (for analyzing response speed and overshoot). After reaching the target temperature, continuously record for at least 1-2 hours (or as per standard requirements), with a sampling frequency high enough (such as once per second), and analyze the recorded data. 4. Load test: Place standard reference materials with known thermal physical properties or typical samples to be tested between the hot plates. Repeat step 3 and observe the changes in temperature control performance under load conditions. Load will directly affect the thermal inertia of the system, thereby influencing the response speed and stability.   When you are choosing or using a heat flow meter, be sure to carefully review the specific parameters regarding temperature control performance in its technical specification sheet and understand under what conditions (no-load/load) these parameters were measured. Lab will provide clear and verifiable temperature control test data and reports.
    Mehr lesen
  • How is over-temperature protection carried out in a temperature test chamber?
    Oct 23, 2025
    The over-temperature protection of the temperature test chamber is a multi-level and multi-redundant safety system. Its core purpose is to prevent the temperature inside the chamber from rising out of control due to equipment failure, thereby protecting the safety of the test samples, the test chamber itself and the laboratory environment.   The protection system usually consists of the following key parts working together: 1. Sensor: The main sensor is used for the normal temperature control of the test chamber and provides feedback signals to the main controller. An independent over-temperature protection sensor is the key to a safety system. It is a temperature-sensing element independent of the main control temperature system (usually a platinum resistance or thermocouple), which is placed by strategically at the position within the box that best represents the risk of overheating (such as near the heater outlet or on the top of the working chamber). Its sole task is to monitor over-temperature. 2. Processing unit: The main controller receives signals from the main sensor and executes the set temperature program. The independent over-temperature protector, as an independent hardware device, is specifically designed to receive and process the signals from the over-temperature protection sensor. It does not rely on the main controller. Even if the main controller crashes or experiences a serious malfunction, it can still operate normally. 3. Actuator: The main controller controls the on and off of the heater and the cooler. The safety relay/solid-state relay receives the signal sent by the over-temperature protector and directly cuts off the power supply circuit of the heater. This is the final execution action.   The over-temperature protection of the temperature test chamber is a multi-level, hard-wire connected safety system designed based on the concepts of "redundancy" and "independence". It does not rely on the main control system. Through independent sensors and controllers, when a dangerous temperature is detected, it directly and forcibly cuts off the heating energy and notifies the user through sound and light alarms, thus forming a complete and reliable safety closed loop.
    Mehr lesen
  • Lab Aging Test Chamber Working Principle
    Oct 17, 2025
    Many products (such as rubber, plastic, insulating materials, electronic components, etc.) will age due to the combined effects of heat and oxygen when exposed to the natural environment over a long period of use, such as becoming hard, brittle, cracking, and experiencing a decline in performance. This process is very slow in its natural state. The air-exchange aging test chamber greatly accelerates the aging process by creating a continuously high-temperature environment and constantly replenishing fresh air in the laboratory, thereby evaluating the long-term heat aging resistance of materials in a short period of time.   The working principle of Lab aging test chamber mainly relies on the collaborative efforts of three systems: 1. The heating system provides and maintains a high-temperature environment inside the test chamber. High-performance electric heaters are usually adopted and installed at the bottom, back or in the air duct of the test chamber. After the controller sets the target temperature (for example, 150°C), the heater starts to work. The air is blown through the heater by a high-power fan. The heated air is forced to circulate inside the box, causing the temperature inside the box to rise evenly and remain at the set value. 2. The ventilation system is the key that distinguishes it from ordinary ovens. At high temperatures, the sample will undergo an oxidation reaction with oxygen in the air, consuming oxygen and generating volatile products. If the air is not exchanged, the oxygen concentration inside the box will decrease, the reaction will slow down, and it may even be surrounded by the products of the sample's own decomposition. This is inconsistent with the actual usage of the product in a naturally ventilated environment. 3. The control system precisely controls the parameters of the entire testing process. The PID (Proportional-integral-Derivative) intelligent control mode is adopted. The real-time temperature is fed back through the temperature sensor inside the box (such as platinum resistance PT100). The controller precisely adjusts the output power of the heater to ensure that the temperature fluctuation is extremely small and remains stable at the set value. Set the air exchange volume within a unit of time (for example, 50 air changes per hour). This is one of the core parameters of the air-exchange aging test chamber, which usually follows relevant test standards (such as GB/T, ASTM, IEC, etc.).   The test chamber creates a high-temperature environment through electric heaters, achieves uniform temperature inside the box by using centrifugal fans, and continuously expels exhaust gases and draws in fresh air through a unique ventilation system. Thus, under controllable experimental conditions, it simulates and accelerates the aging process of materials in a naturally ventilated thermal and oxygen environment. The biggest difference between it and a common oven lies in its "ventilation" function, which enables its test results to more truly reflect the heat aging resistance of the material during long-term use.
    Mehr lesen
  • So wählen Sie die geeignete Kühlmethode für Prüfkammern aus?
    Sep 09, 2025
    Luftkühlung und Wasserkühlung sind zwei gängige Methoden zur Wärmeableitung in Kühlgeräten. Der größte Unterschied liegt in den unterschiedlichen Medien, die sie zur Ableitung der vom System erzeugten Wärme an die Umgebung verwenden: Luftkühlung nutzt Luft, Wasserkühlung Wasser. Dieser grundlegende Unterschied hat zu zahlreichen Differenzierungen hinsichtlich Installation, Nutzung, Kosten und Anwendungsszenarien geführt. 1. Luftgekühltes SystemDas Funktionsprinzip eines Luftkühlsystems besteht darin, einen Luftstrom durch einen Ventilator zu leiten und ihn über das zentrale Wärmeableitungselement – ​​den Lamellenkondensator – zu blasen. Dadurch wird die Wärme im Kondensator abgeführt und an die Umgebungsluft abgegeben. Die Installation ist sehr einfach und flexibel. Das Gerät kann einfach nach Anschluss an die Stromversorgung betrieben werden und benötigt keine zusätzlichen Einrichtungen, wodurch der Aufwand für eine Standortsanierung minimal ist. Die Kühlleistung wird maßgeblich von der Umgebungstemperatur beeinflusst. In heißen Sommern oder bei hohen Temperaturen und schlechter Belüftung sinkt die Wärmeableitungseffizienz aufgrund des geringeren Temperaturunterschieds zwischen Luft und Kondensator deutlich, was zu einer verringerten Kühlleistung des Geräts und einem erhöhten Betriebsenergieverbrauch führt. Darüber hinaus ist der Betrieb mit erheblichen Lüftergeräuschen verbunden. Die Anfangsinvestition ist in der Regel gering, und die tägliche Wartung ist relativ einfach. Die Hauptaufgabe besteht darin, die Kondensatorlamellen regelmäßig von Staub zu befreien, um eine reibungslose Belüftung zu gewährleisten. Die Hauptbetriebskosten entstehen durch den Stromverbrauch. Luftgekühlte Systeme eignen sich hervorragend für kleine und mittelgroße Geräte, Gebiete mit reichlich Strom, aber knappen Wasserressourcen oder ungünstigem Zugang zu Wasser, Labore mit kontrollierbarer Umgebungstemperatur sowie Projekte mit begrenztem Budget oder solche, die einen einfachen und schnellen Installationsprozess bevorzugen. 2. Wassergekühltes SystemDas Funktionsprinzip eines Wasserkühlsystems besteht darin, dass zirkulierendes Wasser durch einen speziellen wassergekühlten Kondensator fließt, um die Wärme des Systems aufzunehmen und abzuleiten. Das erwärmte Wasser wird üblicherweise zur Kühlung in einen Kühlturm im Freien geleitet und anschließend wiederverwendet. Die Installation ist komplex und erfordert ein komplettes externes Wassersystem, einschließlich Kühltürmen, Wasserpumpen, Wasserleitungsnetzen und Wasseraufbereitungsanlagen. Dies legt nicht nur den Installationsort der Geräte fest, sondern stellt auch hohe Anforderungen an die Standortplanung und Infrastruktur. Die Wärmeableitungsleistung des Systems ist sehr stabil und wird von Änderungen der Umgebungstemperatur kaum beeinflusst. Gleichzeitig sind die Betriebsgeräusche in der Nähe des Gerätegehäuses relativ gering. Die Anfangsinvestition ist hoch. Neben dem Stromverbrauch entstehen weitere Kosten, beispielsweise durch den kontinuierlichen Wasserverbrauch im täglichen Betrieb. Die Wartung ist professioneller und komplexer und muss durchgeführt werden, um Kalkablagerungen, Korrosion und mikrobiellem Wachstum vorzubeugen. Wassergekühlte Systeme eignen sich vor allem für große, leistungsstarke Industriegeräte, Werkstätten mit hohen Umgebungstemperaturen oder schlechten Belüftungsbedingungen sowie Situationen, in denen eine extrem hohe Temperaturstabilität und Kühleffizienz erforderlich sind. Bei der Entscheidung zwischen Luft- und Wasserkühlung geht es nicht darum, deren absolute Überlegenheit oder Unterlegenheit zu beurteilen, sondern die Lösung zu finden, die den eigenen Bedingungen am besten entspricht. Die Entscheidung sollte auf folgenden Überlegungen beruhen: Erstens wird bei großen Hochleistungsgeräten in der Regel eine Wasserkühlung bevorzugt, um eine stabile Leistung zu erzielen. Gleichzeitig müssen das geografische Klima des Labors (ob es heiß ist), die Wasserversorgungsbedingungen, der Installationsraum und die Belüftungsbedingungen berücksichtigt werden. Zweitens ist Luftkühlung eine geeignete Wahl, wenn eine relativ geringe Anfangsinvestition wichtig ist. Liegt der Schwerpunkt auf langfristiger Betriebsenergieeffizienz und Stabilität und sind die relativ hohen Anschaffungskosten nicht scheu, bietet Wasserkühlung die größeren Vorteile. Schließlich ist zu berücksichtigen, ob man über die fachlichen Fähigkeiten verfügt, regelmäßige Wartungsarbeiten an komplexen Wassersystemen durchzuführen.
    Mehr lesen
  • Funktionsprinzip des Lab Companion Vakuumofens Funktionsprinzip des Lab Companion Vakuumofens
    Sep 02, 2025
    Der Lab Companion Vakuumofen ist ein Präzisionsgerät zum Trocknen von Materialien unter Niederdruckbedingungen. Sein Funktionsprinzip basiert auf einem zentralen wissenschaftlichen Prinzip: Im Vakuum sinkt der Siedepunkt einer Flüssigkeit deutlich. Der Arbeitsprozess lässt sich in drei Hauptschritte unterteilen: 1. Vakuumerzeugung: Durch kontinuierliches Absaugen von Luft aus der Ofenkammer mittels einer Vakuumpumpe wird der Innendruck auf ein Niveau weit unter dem atmosphärischen Druck (typischerweise bis zu 10 Pa oder sogar höhere Vakuumgrade) gesenkt. Dadurch werden zwei Ziele erreicht: Erstens wird der Sauerstoffgehalt im Ofenraum deutlich reduziert, wodurch die Oxidation des Materials während des Erhitzungsprozesses verhindert wird. Zweitens werden die Voraussetzungen für den zentralen physikalischen Prozess geschaffen: das Niedertemperatursieden.2. Heizung liefert Energie: Sobald das Vakuum hergestellt ist, beginnt das Heizsystem (üblicherweise mit elektrischen Heizdrähten oder Heizplatten) zu arbeiten und versorgt die Materialien in der Kammer mit Wärmeenergie. Aufgrund des extrem niedrigen Innendrucks sinkt der Siedepunkt der im Material enthaltenen Feuchtigkeit oder anderer Lösungsmittel stark. Beispielsweise kann bei einem Vakuum von -0,085 MPa der Siedepunkt von Wasser auf etwa 45 °C gesenkt werden. Das bedeutet, dass das Material nicht auf die üblichen 100 °C erhitzt werden muss und die Feuchtigkeit im Inneren bei niedrigeren Temperaturen schnell verdampfen kann.3. Dampfentfernung: Der durch die Verdampfung entstehende Wasserdampf oder andere Lösungsmitteldämpfe werden von der Oberfläche und dem Inneren des Materials freigesetzt. Aufgrund des Druckunterschieds im Hohlraum diffundieren diese Dämpfe schnell und werden kontinuierlich von der Vakuumpumpe abgesaugt und anschließend in die Umgebung abgegeben. Dieser Prozess läuft kontinuierlich ab, um eine trockene Umgebung zu gewährleisten und eine erneute Kondensation des Dampfes im Hohlraum zu verhindern. Dadurch wird die Trocknungsreaktion kontinuierlich und effizient zur Dehydratation vorangetrieben. Aufgrund ihrer Eigenschaft, bei niedrigen Temperaturen und mit hoher Effizienz zu trocknen, werden Vakuumöfen häufig in den Bereichen Pharmazie, Chemie, Elektronik, Lebensmittel und Materialwissenschaften eingesetzt und eignen sich besonders für die Verarbeitung wertvoller, empfindlicher oder mit herkömmlichen Methoden schwer zu trocknender Materialien.
    Mehr lesen
  • Einsatz von Hoch- und Niedertemperaturprüfkammern in der Forschung an neuen Energiematerialien Einsatz von Hoch- und Niedertemperaturprüfkammern in der Forschung an neuen Energiematerialien
    Aug 30, 2025
    1. Lithium-Ionen-Batterien: In allen F&E-Phasen von Lithium-Ionen-Batterien, von den Materialien über die Zellen bis hin zu den Modulen, werden Hoch- und Niedertemperaturtests durchgeführt. 2. Materialebene: Bewerten Sie die grundlegenden physikalischen und chemischen Eigenschaften von Grundmaterialien wie positiven und negativen Elektrodenmaterialien, Elektrolyten und Separatoren bei unterschiedlichen Temperaturen. Beispielsweise können Sie das Lithium-Plating-Risiko von Anodenmaterialien bei niedrigen Temperaturen testen oder die thermische Schrumpfrate (MSDS) von Separatoren bei hohen Temperaturen untersuchen. 3. Zellebene: Simulieren Sie den kalten Winter in der Tieftemperaturzone (z. B. -40 °C bis -20 °C), testen Sie den Startvorgang, die Entladekapazität und die Ratenleistung der Batterie bei niedrigen Temperaturen und liefern Sie Daten zur Verbesserung der Leistung bei niedrigen Temperaturen. Zyklische Lade- und Entladetests werden bei hohen Temperaturen (z. B. 45 °C und 60 °C) durchgeführt, um die Alterung zu beschleunigen und die langfristige Lebensdauer und Kapazitätserhaltungsrate der Batterie vorherzusagen. 4. Brennstoffzellen: Protonenaustauschmembran-Brennstoffzellen (PEMFC) stellen extrem hohe Anforderungen an den Umgang mit Wasser und Wärme. Die Kaltstartfähigkeit ist ein entscheidender technischer Engpass für die Kommerzialisierung von Brennstoffzellen. Die Testkammer simuliert eine Umgebung unter dem Gefrierpunkt (z. B. -30 °C), um zu testen, ob das System nach dem Einfrieren erfolgreich gestartet werden kann, und um die mechanischen Schäden durch Eiskristalle an der katalytischen Schicht und der Protonenaustauschmembran zu untersuchen. 5. Photovoltaikmaterialien: Solarmodule müssen im Außenbereich über 25 Jahre lang zuverlässig funktionieren und den harten Belastungen bei Tag und Nacht sowie in allen vier Jahreszeiten standhalten. Durch die Simulation von Temperaturunterschieden zwischen Tag und Nacht (z. B. 200 Zyklen von -40 °C bis 85 °C) können die thermische Ermüdung des Verbindungslötbandes der Batteriezellen, die Alterung und Vergilbung der Verkapselungsmaterialien (EVA/POE) sowie die Verbindungszuverlässigkeit zwischen verschiedenen laminierten Materialien getestet werden, um Delamination und Ausfälle zu verhindern.   Moderne Hoch- und Tieftemperaturprüfkammern sind nicht länger einfache Temperaturwechselkammern, sondern intelligente Testplattformen mit mehreren Funktionen. Die fortschrittliche Testkammer ist mit Beobachtungsfenstern und Testlöchern ausgestattet, sodass Forscher die Proben während Temperaturänderungen in Echtzeit überwachen können.
    Mehr lesen
1 2
Insgesamt 2Seiten

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns