Schreiben Sie uns eine E-Mail :
info@lab-companion.com labcompanionltd@gmail.com-
-
Rückruf anfordern :
+86 18688888286
Many products (such as rubber, plastic, insulating materials, electronic components, etc.) will age due to the combined effects of heat and oxygen when exposed to the natural environment over a long period of use, such as becoming hard, brittle, cracking, and experiencing a decline in performance. This process is very slow in its natural state. The air-exchange aging test chamber greatly accelerates the aging process by creating a continuously high-temperature environment and constantly replenishing fresh air in the laboratory, thereby evaluating the long-term heat aging resistance of materials in a short period of time.
The working principle of Lab aging test chamber mainly relies on the collaborative efforts of three systems:
1. The heating system provides and maintains a high-temperature environment inside the test chamber. High-performance electric heaters are usually adopted and installed at the bottom, back or in the air duct of the test chamber. After the controller sets the target temperature (for example, 150°C), the heater starts to work. The air is blown through the heater by a high-power fan. The heated air is forced to circulate inside the box, causing the temperature inside the box to rise evenly and remain at the set value.
2. The ventilation system is the key that distinguishes it from ordinary ovens. At high temperatures, the sample will undergo an oxidation reaction with oxygen in the air, consuming oxygen and generating volatile products. If the air is not exchanged, the oxygen concentration inside the box will decrease, the reaction will slow down, and it may even be surrounded by the products of the sample's own decomposition. This is inconsistent with the actual usage of the product in a naturally ventilated environment.
3. The control system precisely controls the parameters of the entire testing process. The PID (Proportional-integral-Derivative) intelligent control mode is adopted. The real-time temperature is fed back through the temperature sensor inside the box (such as platinum resistance PT100). The controller precisely adjusts the output power of the heater to ensure that the temperature fluctuation is extremely small and remains stable at the set value. Set the air exchange volume within a unit of time (for example, 50 air changes per hour). This is one of the core parameters of the air-exchange aging test chamber, which usually follows relevant test standards (such as GB/T, ASTM, IEC, etc.).
The test chamber creates a high-temperature environment through electric heaters, achieves uniform temperature inside the box by using centrifugal fans, and continuously expels exhaust gases and draws in fresh air through a unique ventilation system. Thus, under controllable experimental conditions, it simulates and accelerates the aging process of materials in a naturally ventilated thermal and oxygen environment. The biggest difference between it and a common oven lies in its "ventilation" function, which enables its test results to more truly reflect the heat aging resistance of the material during long-term use.