Banner
Heim

Temperatur-Feuchtigkeits-Testkammer

Temperatur-Feuchtigkeits-Testkammer

  • Rapid Temperature Change vs. Standard Chambers: Selection Guide & Cost Comparison Rapid Temperature Change vs. Standard Chambers: Selection Guide & Cost Comparison
    Jan 07, 2026
    High-low temperature test chambers are essential equipment in product reliability testing. However, many procurement managers struggle when choosing between standard models and rapid temperature change (RTC) models: What are the key differences? How much is the price gap? Which is more cost-effective for long-term use? This guide clarifies the core differences in performance, applications, and costs to help you make the right choice. I. Core Performance Differences: Beyond "Faster Heating/Cooling" The gap between the two is far more than just temperature rate—extending to structural design and testing capabilities. Comparison Dimension Standard High-Low Temperature Chamber Rapid Temperature Change Chamber Temperature Rate 0.7-1℃/min (standard), meeting basic testing needs 3-20℃/min (customizable), some models support linear heating/cooling Structural Design Single compressor + standard air duct, simple structure Dual-compressor cascade system + high-efficiency heat exchange module + impact-resistant structure, suitable for high-frequency temperature changes Temperature Control Precision Fluctuation ±0.5℃, uniformity ±2℃ Fluctuation ±0.3℃, uniformity ±1.5℃, no overshoot during temperature changes Core Testing Capability Complies with GB/T 2423 standard; suitable for steady-state high-low temperature storage and temperature resistance testing Simulates extreme rapid temperature change environments; supports accelerated aging testing, significantly shortening verification cycles     Standard chambers suffice for consumer electronics, small home appliances, etc. For new energy batteries, automotive components, aerospace, RTC chambers are a must—they accurately simulate severe temperature changes during transportation/use to expose product defects in advance. Example: An automotive parts enterprise reduced testing cycles from 3 months (standard chamber) to 1 month (RTC chamber), advancing product launch by 2 months. II. Cost Differences: Procurement, Operation & Maintenance RTC chambers are more expensive, but the specific cost gap and long-term expenses are detailed below: 1. Procurement Cost: 2-5x Higher, Driven by High-Quality Components For the same volume, RTC chambers cost 2-5x more than standard models. The gap stems from high-precision dual compressors, custom heating/cooling modules, and fatigue-resistant structural parts—all with higher R&D and production thresholds. 2. Operating Cost: Higher Power & Consumables RTC chambers consume 1.5-3x more power: A 100L standard chamber uses 5-8kW, while an RTC model uses 8-20kW. Electricity costs increase with usage frequency. RTC chambers also require special high-temperature heat transfer oil and eco-friendly refrigerants, with consumable costs twice that of standard models (which mainly use low-cost filters and sensor calibration). 3. Maintenance Cost: Complex Structure = Higher Requirements Standard chambers have simple structures and few wearing parts, with low annual maintenance costs (filter replacement, sensor calibration). RTC chambers require more frequent maintenance due to multiple core components and high precision; annual maintenance costs are 1.8-3x higher (e.g., dual compressor and precision control system overhauls). III. Selection Guide: Choose Based on Needs ✅ Choose Standard Chamber If: 1. You’re in consumer electronics, home appliances, toys, etc., and only need to meet GB/T 2423 standard 2. Budget is limited, pursuing cost-effectiveness, and testing frequency is low 1. Testing goals: Basic high-low temperature storage and temperature resistance verification ✅ Choose RTC Chamber If: 2. You’re in new energy, automotive, aerospace, needing to simulate extreme temperature changes • You want to shorten testing cycles and accelerate product launches • High testing requirements: Precise temperature rate control and no overshoot IV. Lab Companion: Customized Cost-Effective Solutions     As a professional test equipment manufacturer, Guangdong Hongzhan Technology offers cost-effective standard high-low temperature chambers and customizable RTC chambers (3-20℃/min) for new energy, automotive, and other industries with strict requirements.   Lab Companion provide not only equipment but also one-stop customized solutions based on your testing needs and budget—helping you clarify costs and select the right chamber for efficient, worry-free product reliability testing.   Contact us anytime for accurate quotes and customized selection plans tailored to your industry and needs!
    Mehr lesen
  • Core 6 Factors for Rapid Temperature Change Chamber Selection Core 6 Factors for Rapid Temperature Change Chamber Selection
    Jan 06, 2026
    Core Logic: Match testing requirements, balance performance and full life-cycle cost, and avoid over-specification for under-utilization. I. Core Testing Requirements 1. Temperature Change Rate Clarify the loaded rate and deviation requirements (e.g., ≤±0.5℃/min), and match the application scenarios: l 5–10℃/min for consumer electronics l 10–20℃/min for automotive/aerospace industries 2. Temperature & Humidity Range Cover the specified testing standards: l -40~85℃ for new energy products l -55~125℃ for aerospace products Select models with 20%–98%RH range if humidity testing is required. 3. Sample Compatibility l The chamber volume should be ≥ 3 times the sample volume. l Dynamic load compensation is required for high-heat-capacity samples (e.g., metal components). II. Hardware Performance 1. Refrigeration System Prioritize dual-compressor cascade systems equipped with imported brands (Danfoss/Copeland) and eco-friendly refrigerants (R404A/R23). 2. Air Duct & Heating System Adopt scroll diversion + baffle design, with 0–100% linear adjustment of heating tubes. 3. Sensors Use imported PT1000 sensors with a sampling frequency of ≥ 10 times/second. III. Software Functions 1. Algorithm PID closed-loop control + adaptive temperature zone compensation, supporting custom rate curve setting. 2. Data Management Automatic data recording and export (Excel/CSV format), with support for remote control and multi-channel alarm. 3. Safety Features Over-temperature protection, compressor overload protection, water shortage protection, etc. Explosion-proof pressure relief devices are mandatory for flammable and explosive samples. IV. Full Life-Cycle Cost 1. Procurement Cost Select models based on actual needs; avoid blind pursuit of high rates (the price of 10℃/min models is 1.5–2 times that of 5℃/min models). 2. Operation Cost Prefer inverter compressors to reduce electricity consumption by 15%–20%. 3. Maintenance Cost Choose models with modular structure, and confirm annual free calibration services. V. Expandability & Compatibility Support post-purchase installation of humidity, explosion-proof, and data acquisition modules. Compatible with upper computers and testing fixtures for automated testing. VI. Manufacturer Services & Qualifications Provide customized solutions and loaded rate test reports. Ensure the equipment has passed ISO 9001 and CE certifications, complying with the GB/T 2423.22 standard. Ø Selection Case Testing Scenario: Automotive motor controller testing (8kg, AEC-Q100 standard) Recommended Model: 150L chamber with 10℃/min loaded rate, -40~125℃ temperature range, and explosion-proof function. Benefits: Balances testing requirements and cost, improving testing efficiency by 4 times.
    Mehr lesen
  • Equipment Selection Guide: Ovens vs. Temperature Test Chambers Equipment Selection Guide: Ovens vs. Temperature Test Chambers
    Jan 04, 2026
        Equipment selection directly impacts efficiency, quality and data reliability. Standard ovens, precision ovens and temperature-humidity test chambers have distinct functional boundaries and application scenarios. Many enterprises suffer cost waste or functional insufficiency due to improper selection. This guide clarifies selection logic, breaks down matching schemes, avoids common pitfalls and provides precise guidance based on practical scenarios. 1. Core Selection Logic Adhere to the four-step framework of defining demand types → verifying temperature accuracy → supplementing environmental requirements → matching budget to clarify equipment selection boundaries. Step 1: Define Demand Types Choose oven series for process applications (drying, curing, etc.). Choose temperature-humidity test chambers for environmental reliability verification (extreme temperature variation, humidity exposure). Note: Ovens lack cooling function and cannot replace test chambers. Step 2: Verify Temperature Control Accuracy Standard ovens: Suitable for applications allowing ±5℃ temperature deviation. Precision ovens: Required for high-precision scenarios (±1℃ tolerance, e.g., electronic packaging, medical sterile drying). Temperature-humidity test chambers: Ideal for extreme environment testing, with accuracy up to ±1℃ (even ±0.5℃ for premium models). Step 3: Supplement Environmental Requirements Ovens: Applicable for ambient temperature heating only. Temperature-humidity test chambers (including humidity-controlled models): Necessary for low-temperature (-20℃ ~ -70℃), cyclic temperature variation or humidity control (e.g., 85℃/85%RH) applications. Note: Precision ovens do not support cooling or humidity control functions. Step 4: Match Budget Standard ovens (thousands of CNY): For basic drying tasks with limited budget. Precision ovens (10,000 ~ 100,000 CNY): For processes requiring high precision and stability. Temperature-humidity test chambers (100,000 ~ hundreds of thousands of CNY): For professional environmental testing; reserve budget for operation and maintenance. 2. Typical Application Scenarios: Demand-Equipment Matching This section breaks down matching schemes for three key sectors (electronics, automotive, medical & research) to provide intuitive references. Electronics Industry Simple component drying (±5℃ tolerance): Standard oven PCB solder paste curing (±0.5℃ accuracy, ±1℃ uniformity, multi-stage temperature control): Precision oven Chip cyclic testing (-40℃ ~ 125℃, data traceability required): Temperature-humidity test chamber Automotive Industry Basic part drying (±5℃ tolerance): Standard oven Sensor 24-hour aging test at 85℃ (±0.3℃ accuracy): Precision oven Battery pack rapid temperature cycling test (-40℃ ~ 85℃): Rapid temperature change test chamber Medical & Research Industry Routine consumable drying (±5℃ tolerance): Standard oven Syringe & catheter sterile drying (±0.5℃ accuracy, clean inner chamber, data traceability): Precision oven with 316 stainless steel enclosure Plastic material thermal stability study (-30℃ ~ 150℃): Temperature-humidity test chamber 3. Common Selection Pitfalls: Risk Avoidance Misconceptions often lead to wrong selections. Focus on avoiding these three key pitfalls: Pitfall 1: Using standard ovens instead of precision ovens Short-term cost reduction may cause higher product rejection rates and increased long-term costs. Solution: Always choose precision ovens for applications requiring ±1℃ accuracy; improved yield will offset the incremental cost. Pitfall 2: Using precision ovens for temperature cycling tests Ovens lack cooling capability, leading to test failure. Solution: Directly select temperature-humidity test chambers for low-temperature or cyclic temperature variation tests. Pitfall 3: Blindly pursuing high-spec test chambers Results in cost waste and underutilization of functions. Solution: Select equipment strictly based on actual test parameters to balance demand and budget. Conclusion The core of equipment selection lies in precise demand matching. Clarifying demand types and core parameters, combining scenario requirements with budget planning, and avoiding common pitfalls will maximize equipment value, support production quality improvement and boost R&D efficiency.
    Mehr lesen
  • Eine kurze Diskussion über die Verwendung und Wartung einer Umweltprüfkammer
    May 10, 2025
    Ⅰ. Richtige Verwendung von LABCOMPANION's InstrumentUmweltprüfgeräte sind nach wie vor Präzisions- und hochwertige Instrumente. Der korrekte Betrieb und die korrekte Anwendung liefern dem Prüfpersonal nicht nur genaue Daten, sondern gewährleisten auch einen langfristigen Normalbetrieb und verlängern die Lebensdauer der Geräte. Vor der Durchführung von Umweltprüfungen ist es wichtig, sich mit der Leistung der Prüflinge, den Prüfbedingungen, Verfahren und Techniken vertraut zu machen. Ein umfassendes Verständnis der technischen Spezifikationen und des Aufbaus der Prüfgeräte – insbesondere der Bedienung und Funktionalität des Controllers – ist unerlässlich. Das sorgfältige Lesen der Bedienungsanleitung des Geräts kann Fehlfunktionen durch Bedienungsfehler vermeiden, die zu Probenschäden oder ungenauen Testdaten führen können. Zweitens: Wählen Sie die geeignete Prüfausrüstung aus. Um einen reibungslosen Testablauf zu gewährleisten, sollte die Ausrüstung entsprechend den Eigenschaften der Prüflinge ausgewählt werden. Achten Sie auf ein angemessenes Verhältnis zwischen Probenvolumen und effektivem Kammervolumen der Prüfkammer. Bei wärmeableitenden Proben sollte das Volumen ein Zehntel des Kammervolumens nicht überschreiten. Bei nicht heizenden Proben sollte das Volumen ein Fünftel nicht überschreiten. Beispielsweise passt ein 21-Zoll-Farbfernseher im Temperaturlagertest möglicherweise gut in eine 1-Kubikmeter-Kammer. Wird der Fernseher jedoch eingeschaltet, ist aufgrund der Wärmeentwicklung eine größere Kammer erforderlich. Drittens: Positionieren Sie die Testproben korrekt. Die Proben sollten mindestens 10 cm von den Kammerwänden entfernt platziert werden. Mehrere Proben sollten möglichst auf derselben Ebene angeordnet werden. Die Platzierung sollte den Luftaus- oder -einlass nicht behindern, und um die Temperatur- und Feuchtigkeitssensoren herum sollte ausreichend Platz bleiben, um genaue Messwerte zu gewährleisten. Viertens: Bei Tests, die zusätzliche Medien erfordern, muss der richtige Typ gemäß den Spezifikationen hinzugefügt werden. Beispielsweise wird Wasser in Feuchtigkeitsprüfkammern muss bestimmte Anforderungen erfüllen: Der spezifische Widerstand darf nicht unter 500 Ω·m liegen. Leitungswasser hat typischerweise einen spezifischen Widerstand von 10–100 Ω·m, destilliertes Wasser von 100–10.000 Ω·m und deionisiertes Wasser von 10.000–100.000 Ω·m. Daher muss für Feuchtigkeitstests destilliertes oder deionisiertes Wasser verwendet werden, und es sollte frisch sein, da Wasser an der Luft Kohlendioxid und Staub absorbiert, wodurch sein spezifischer Widerstand mit der Zeit abnimmt. Handelsübliches gereinigtes Wasser ist eine kostengünstige und praktische Alternative. Fünftens: Die richtige Verwendung von Feuchtigkeitsprüfkammern. Die in Feuchtigkeitskammern verwendete Feuchtkugelgaze oder das Feuchtkugelpapier muss bestimmten Standards entsprechen – nicht jede Gaze kann diese ersetzen. Da die relative Luftfeuchtigkeit aus der Differenz zwischen Trocken- und Feuchtkugeltemperatur abgeleitet wird (genau genommen auch beeinflusst durch Luftdruck und Luftstrom), hängt die Feuchtkugeltemperatur von der Wasseraufnahme und der Verdunstungsrate ab, die wiederum direkt von der Gazequalität beeinflusst wird. Meteorologische Standards schreiben vor, dass die Feuchtkugelgaze eine spezielle „Feuchtkugelgaze“ aus Leinen sein muss. Falsche Gaze kann zu einer ungenauen Feuchtigkeitskontrolle führen. Außerdem muss die Gaze richtig installiert werden: 100 mm lang, fest um den Sensorfühler gewickelt, wobei sich der Fühler 25–30 mm über dem Wasserbecher befindet und die Gaze in Wasser getaucht ist, um eine präzise Feuchtigkeitskontrolle zu gewährleisten. Ⅱ. Wartung von UmweltprüfgerätenEs gibt verschiedene Arten von Umweltprüfgeräten, am häufigsten werden jedoch Hochtemperatur-, Niedertemperatur- und Feuchtekammern verwendet. In letzter Zeit erfreuen sich kombinierte Temperatur-Feuchte-Prüfkammern mit diesen Funktionen zunehmender Beliebtheit. Diese sind aufwendiger zu reparieren und dienen als repräsentative Beispiele. Im Folgenden erläutern wir den Aufbau, häufige Störungen und Fehlerbehebungsmethoden für Temperatur-Feuchte-Prüfkammern. (1) Aufbau gängiger Temperatur-FeuchtigkeitsprüfkammernNeben der ordnungsgemäßen Bedienung sollte das Prüfpersonal den Aufbau des Geräts verstehen. Eine Temperatur-Feuchtigkeits-Prüfkammer besteht aus einem Kammerkörper, einem Luftzirkulationssystem, einem Kühlsystem, einem Heizsystem und einem Feuchtigkeitsregelsystem. Das Luftzirkulationssystem verfügt typischerweise über eine einstellbare Luftstromrichtung. Das Befeuchtungssystem kann kesselbasierte oder Oberflächenverdampfungsverfahren verwenden. Das Kühl- und Entfeuchtungssystem nutzt einen Klimaanlagen-Kältekreislauf. Das Heizsystem kann elektrische Lamellenheizungen oder eine direkte Widerstandsdrahtheizung verwenden. Zu den Temperatur- und Feuchtigkeitsmessverfahren gehören Trocken-Feuchtigkeits-Temperaturmessungen oder direkte Feuchtigkeitssensoren. Bedien- und Anzeigeschnittstellen können über separate oder kombinierte Temperatur-Feuchtigkeitsregler verfügen. (2) Häufige Störungen und Methoden zur Fehlerbehebung für Temperatur-Feuchtigkeitsprüfkammern1. Probleme beim Hochtemperaturtest Wenn die Temperatur den eingestellten Wert nicht erreicht, überprüfen Sie die elektrische Anlage auf Fehler.Wenn die Temperatur zu langsam steigt, überprüfen Sie das Luftzirkulationssystem und stellen Sie sicher, dass die Klappe richtig eingestellt ist und der Lüftermotor funktioniert.Wenn es zu Temperaturüberschreitungen kommt, kalibrieren Sie die PID-Einstellungen neu.Wenn die Temperatur unkontrolliert ansteigt, ist der Regler möglicherweise defekt und muss ausgetauscht werden. 2. Probleme beim Testen bei niedrigen Temperaturen Wenn die Temperatur zu langsam sinkt oder nach Erreichen eines bestimmten Punktes wieder ansteigt: Stellen Sie sicher, dass die Kammer vor dem Test getrocknet ist. Stellen Sie sicher, dass die Proben nicht zu dicht angeordnet sind und dadurch der Luftstrom behindert wird. Wenn diese Faktoren ausgeschlossen werden können, muss das Kühlsystem möglicherweise professionell gewartet werden.Ein Temperaturanstieg ist häufig auf schlechte Umgebungsbedingungen zurückzuführen (z. B. unzureichender Abstand hinter der Kammer oder hohe Umgebungstemperatur). 3. Probleme beim Feuchtigkeitstest Wenn die Luftfeuchtigkeit 100 % erreicht oder erheblich vom Ziel abweicht: Bei 100 % Luftfeuchtigkeit: Prüfen Sie, ob die Feuchtkugelgaze trocken ist. Überprüfen Sie den Wasserstand im Reservoir des Feuchtkugelsensors und der automatischen Wasserzufuhr. Ersetzen oder reinigen Sie verhärtete Gaze gegebenenfalls. Bei niedriger Luftfeuchtigkeit: Überprüfen Sie die Wasserversorgung und den Kesselfüllstand des Befeuchtungssystems. Sind diese normal, muss die elektrische Steuerung möglicherweise fachmännisch repariert werden. 4.Notfallstörungen während des Betriebs Bei einer Gerätestörung zeigt das Bedienfeld einen Fehlercode an und ertönt ein akustisches Signal. Bediener können im Abschnitt zur Fehlerbehebung im Handbuch nachsehen, wo das Problem liegt, und professionelle Reparaturen veranlassen, um die Tests umgehend fortzusetzen. Andere Umweltprüfgeräte können andere Probleme aufweisen, die von Fall zu Fall analysiert und behoben werden sollten. Regelmäßige Wartung ist unerlässlich, einschließlich der Reinigung des Kondensators, der Schmierung beweglicher Teile und der Überprüfung der elektrischen Steuerungen. Diese Maßnahmen sind unerlässlich, um die Langlebigkeit und Zuverlässigkeit der Geräte zu gewährleisten.
    Mehr lesen

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns