Banner
Heim

Testkammer für hohe und niedrige Temperaturen

Testkammer für hohe und niedrige Temperaturen

  • Laptop Test Conditions Laptop Test Conditions
    Oct 16, 2024
    Laptop Test Conditions Notebook computer from the early 12-inch screen evolution to the current LED backlit screen, its computing efficiency and 3D processing, will not be lost to the general desktop computer, and the weight is becoming less and less burden, the relative reliability test requirements for the entire notebook computer is becoming more and more stringent, from the early packaging to the current boot down, the traditional high temperature and high humidity to the current condensation test. From the temperature and humidity range of the general environment to the desert test as a common condition, these are the parts that need to be considered in the production of notebook computer related components and design, the test conditions of the relevant environmental tests collected so far are organized and shared with you. Keyboard tapping test: Test one: GB:1 million times Key pressure :0.3~0.8(N) Button stroke :0.3~1.5(mm) Test 2: Key pressure: 75g(±10g) Test 10 keys for 14 days, 240 times per minute, a total of about 4.83 million times, once every 1 million times Japanese manufacturers :2 to 5 million times Taiwan manufacturer 1: more than 8 million times Taiwan Manufacturer 2:10 million times Power switch and connector plug pull test: This test model simulates the lateral forces that each connector can withstand under abnormal usage. General laptop test items: USB, 1394, PS2, RJ45, Modem, VGA... Equal application force 5kg(50 times), up and down left and right pull and plug. Power switch and connector plug test: 4000 times (Power supply) Screen cover opening and closing test: Taiwanese manufacturers: open and close 20,000 times Japanese manufacturer 1: opening and closing test 85,000 times Japanese manufacturer 2: opening and closing 30,000 times System standby and recovery switch test: General note type: interval 10sec, 1000cycles Japanese manufacturer: System standby and recovery switch test 2000 times Common causes of laptop failure: ☆ Foreign objects fall on the notebook ☆ Falls off the table while in use ☆ Tuck the notebook in a handbag or trolley case ☆ Extremely high temperature or low temperature ☆ Normal use (overuse) ☆ Wrong use in tourist destinations ☆PCMCIA inserted incorrectly ☆ Place foreign objects on the keyboard Shutdown drop test: General notebook type :76 cm GB package drop: 100cm Us Army and Japanese notebook computers: The height of the computer is 90 cm from all sides, sides, corners, a total of 26 sides Platform :74 cm (packing required) Land: 90cm (packing required) TOSHIBA&BENQ 100 cm Boot drop test: Japanese :10 cm boot fall Taiwan :74 cm boot fall Laptop main board temperature shock: Slope 20℃/min Number of cycles 50cycles(no operation during impact) The U.S. military's technical standards and test conditions for laptop procurement are as follows: Impact test: Drop the computer 26 times from all sides, sides and corners at a height of 90 cm Earthquake resistance test :20Hz~1000Hz, 1000Hz~2000Hz frequency once an hour X, Y and Z axis continuous vibration Temperature test :0℃~60℃ 72 hours of aging oven Waterproof test: Spray water on the computer for 10 minutes in all directions, and the water spray rate is 1mm per minute Dust test: Spray the concentration of 60,000 mg/ per cubic meter of dust for 2 seconds (interval of 10 minutes, 10 consecutive times, time 1 hour) Meets MIL-STD-810 military specifications Waterproof test: Us Army notebook :protection class:IP54(dust & rain) Sprayed the computer with water in all directions for 10 minutes at a rate of 1mm per minute. Dust proof test: Us Army notebook: Spray a concentration of 60,000 mg/ m3 of dust for 2 seconds (10 minute intervals, 10 consecutive times, time 1 hour)  
    Mehr lesen
  • Temperature Cyclic Stress Screening (2) Temperature Cyclic Stress Screening (2)
    Oct 14, 2024
    Temperature Cyclic Stress Screening (2) Introduction of stress parameters for temperature cyclic stress screening: The stress parameters of temperature cyclic stress screening mainly include the following: high and low temperature extremum range, dwell time, temperature variability, cycle number High and low temperature extremal range: the larger the range of high and low temperature extremal, the fewer cycles required, the lower the cost, but can not exceed the product can withstand the limit, do not cause new fault principle, the difference between the upper and lower limits of temperature change is not less than 88°C, the typical range of change is -54°C to 55°C. Dwell time: In addition, the dwell time can not be too short, otherwise it is too late to make the product under test produce thermal expansion and contraction stress changes, as for the dwell time, the dwell time of different products is different, you can refer to the relevant specification requirements. Number of cycles: As for the number of cycles of temperature cyclic stress screening, it is also determined by considering product characteristics, complexity, upper and lower limits of temperature and screening rate, and the screening number should not be exceeded, otherwise it will cause unnecessary harm to the product and cannot improve the screening rate. The number of temperature cycles ranges from 1 to 10 cycles [ordinary screening, primary screening] to 20 to 60 cycles [precision screening, secondary screening], for the removal of the most likely workmanship defects, about 6 to 10 cycles can be effectively removed, in addition to the effectiveness of the temperature cycle, Mainly depends on the temperature variation of the product surface, rather than the temperature variation inside the test box. There are seven main influencing parameters of temperature cycle: (1) Temperature Range (2) Number of Cycles (3) Temperature Rate of Chang (4) Dwell Time (5) Airflow Velocities (6) Uniformity of Stress (7) Function test or not (Product Operating Condition) Stress screening fatigue classification: The general classification of Fatigue research can be divided into High-cycle Fatigue, Low-cycle Fatigue and Fatigue Crack Growth. In the aspect of low cycle Fatigue, it can be subdivided into Thermal Fatigue and Isothermal Fatigue. Stress screening acronyms: ESS: Environmental stress screening FBT: Function board tester ICA: Circuit analyzer ICT: Circuit tester LBS: load board short-circuit tester MTBF: mean time between failures Time of temperature cycles: a.MIL-STD-2164(GJB 1302-90) : In the defect removal test, the number of temperature cycles is 10, 12 times, and in the trouble-free detection it is 10 ~ 20 times or 12 ~ 24 times. In order to remove the most likely workmanship defects, about 6 ~ 10 cycles are needed to effectively remove them. 1 ~ 10 cycles [general screening, primary screening], 20 ~ 60 cycles [precision screening, secondary screening]. B.od-hdbk-344 (GJB/DZ34) Initial screening equipment and unit level uses 10 to 20 loops (usually ≧10), component level uses 20 to 40 loops (usually ≧25). Temperature variability: a.MIL-STD-2164(GJB1032) clearly states: [Temperature change rate of temperature cycle 5℃/min] B.od-hdbk-344 (GJB/DZ34) Component level 15 ° C /min, system 5 ° C /min c. Temperature cyclic stress screening is generally not specified temperature variability, and its commonly used degree variation rate is usually 5°C/min
    Mehr lesen
  • EC-35EXT, Superior constant temperature bath (306L) EC-35EXT, Superior constant temperature bath (306L)
    Nov 14, 2014
    EC-35EXT, Superior constant temperature bath (306L) Project Type Series EXT Function Temperature occurs in a way Dry wet bulb method Temperature range -70 ~ +150 ℃ Range of temperature Below the + 100℃ ±0.3 ℃ Above the + 101℃ ±0.5 ℃ Temperature distribution Below the + 100℃ ±0. 7 ℃ Above the + 101℃ ±1.0 ℃ The temperature drops the time +125 ~-55 ℃ Within 18 points (10℃ / point average temperature change) Temperature rise time -55 ~+125 ℃ Within 18 minutes (10℃ / minute) The internal volume of the uterus was tested 306L Test room inch method (width, depth and height) 630mm × 540mm × 900mm Product inch method (width, depth and height) 1100mm × 1960mm × 1900mm Make the material External outfit Test room control panel machine room Cold interductile steel plate is dark gray Inside Stainless steel plate (SUS304,2B polished) Broken heat material Test room Hard synthetic resin door Hard synthetic resin foam cotton, glass cotton Project Type Series EXT Cooling dehumidifying device Cooling-down method Mechanical section shrinkage and freezing mode and binary freezing mode Cooling medium;coolant Single segment side R 404A Binary high temperature / low temperature side R 404A / R23 Cooling and dehumidifier Multi-channel mixed heat sink type The condenser (water-cooled) Calorifier Form Nickel-chromium heat-resistant alloy heater Blower Form Stir fan Controller The temperature is set -72.0 ~ + 152.0 ℃ Time setting Fanny 0 ~ 999 Time 59 minutes (formula) 0 ~ 20000 Time 59 minutes (formula formula) Set decomposition energy Temperature was 0.1℃ for 1 min Indicate accuracy Temperature ± 0.8℃ (typ.), time ± 100 PPM Vacation type Value or program Stage number 20-stage / 1 program The number of procedures The maximum number of incoming force (RAM) programs is 32 programs The maximum number of internal ROM programs is 13 programs式 Round-trip number Max. 98, or unlimited Number of round-trip repeats Maximum 3 times Displace the end Pt 100Ω ( at 0 ℃ ),grade ( JIS C 1604-1997 ) Control action When splitting the PID action Endovirus function Early delivery function, standby function, setting value maintenance function, power outage protection function, Power action selection function, maintenance function, transportation round-trip function, Time delivery function, time signal output function, overrising and overcooling prevention function, Abnormal representation function, external alarm output function, setting paradigm representation function, Transport type selection function, the calculation time represents the function, the slot lamp lamp function Project Type Series EXH Control panel Equipment machine LCD operating panel (type contact panel), Represents lamp (power, transport, abnormal), test power supply terminal, external alarm terminal, Time signal output terminal, power cord connector  Protective device Refrigerating cycle Overload protection device, high blocking device Calorifier Temperature over-rise protection device, temperature fuse Blower Overload protection device Control panel Leakage breaker for power supply, fuse (heater,), Fuse (for operating loop), temperature rise protection device (for testing), Temperature rise overcooling prevention device (test material, in microcomputer) Pay belongs to the product Test material shed shed by * 8 Stainless steel Shshed (2), shed (4) Fuse Operating loop Protection Fuses (2) Operating specification ( 1 )  Else Bolus (Cable hole: 1) Equipment products Adventitia Heat-resistant glass: 270mm: 190mm 1   Cable hole Inner diameter of 50mm 1   The trough inside the lamp AC100V 15W White hot ball 1   Wheel   6   Horizontal adjustment   6   Electrovirus characteristics Power supply is * 5.1  AC Three-phase  380V  50Hz Maximum load current 60A Capacity of the leakage breaker for the power supply 80A Sensory current  30mA Power distribution thickness 60mm2 Rubber insulation hose Coarseness of grounding wire 14mm2 Cooling water at * 5.3 Water yield 5000 L /h (When the cooling water inlet temperature is 32℃) water pressure 0.1 ~ 0.5MPa Side pipe diameter of the device PT1 1/4  Tubing Drain-pipe  * 5.4 PT1/2 Product weight 700kg
    Mehr lesen
  • AEC-Q100- Failure Mechanism Based on Integrated Circuit Stress Test Certification AEC-Q100- Failure Mechanism Based on Integrated Circuit Stress Test Certification
    Oct 12, 2024
    AEC-Q100- Failure Mechanism Based on Integrated Circuit Stress Test Certification With the progress of automotive electronic technology, there are many complicated data management control systems in today's cars, and through many independent circuits, to transmit the required signals between each module, the system inside the car is like the "master-slave architecture" of the computer network, in the main control unit and each peripheral module, automotive electronic parts are divided into three categories. Including IC, discrete semiconductor, passive components three categories, in order to ensure that these automotive electronic components meet the highest standards of automotive anquan, the American Automotive Electronics Association (AEC, The Automotive Electronics Council is a set of standards [AEC-Q100] designed for active parts [microcontrollers and integrated circuits...] and [[AEC-Q200] designed for passive components, which specifies the product quality and reliability that must be achieved for passive parts. Aec-q100 is the vehicle reliability test standard formulated by the AEC organization, which is an important entry for 3C and IC manufacturers into the international auto factory module, and also an important technology to improve the reliability quality of Taiwan IC. In addition, the international auto factory has passed the anquan standard (ISO-26262). AEC-Q100 is the basic requirement to pass this standard. List of automotive electronic parts required to pass AECQ-100: Automotive disposable memory, Power Supply step-down regulator, Automotive photocoupler, three-axis accelerometer sensor, video jiema device, rectifier, ambient light sensor, non-volatile ferroelectric memory, power management IC, embedded flash memory, DC/DC regulator, Vehicle gauge network communication device, LCD driver IC, Single power Supply differential Amplifier, Capacitive proximity switch Off, high brightness LED driver, asynchronous switcher, 600V IC, GPS IC, ADAS Advanced Driver Assistance System Chip, GNSS Receiver, GNSS front-end amplifier... Let's wait. AEC-Q100 Categories and Tests: Description: AEC-Q100 specification 7 major categories a total of 41 tests Group A- ACCELERATED ENVIRONMENT STRESS TESTS consists of 6 tests: PC, THB, HAST, AC, UHST, TH, TC, PTC, HTSL Group B- ACCELERATED LIFETIME SIMULATION TESTS consists of three tests: HTOL, ELFR, and EDR PACKAGE ASSEMBLY INTEGRITY TESTS consists of 6 tests: WBS, WBP, SD, PD, SBS, LI Group D- DIE FABRICATION RELIABILITY Test consists of 5 TESTS: EM, TDDB, HCI, NBTI, SM The group ELECTRICAL VERIFICATION TESTS consist of 11 tests, including TEST, FG, HBM/MM, CDM, LU, ED, CHAR, GL, EMC, SC and SER Cluster F-Defect SCREENING TESTS: 11 tests, including: PAT, SBA The CAVITY PACKAGE INTEGRITY TESTS consist of 8 tests, including: MS, VFV, CA, GFL, DROP, LT, DS, IWV Short description of test items: AC: Pressure cooker CA: constant acceleration CDM: electrostatic discharge charged device mode CHAR: indicates the feature description DROP: The package falls DS: chip shear test ED: Electrical distribution EDR: non-failure-prone storage durability, data retention, working life ELFR: Early life failure rate EM: electromigration EMC: Electromagnetic compatibility FG: fault level GFL: Coarse/fine air leakage test GL: Gate leakage caused by thermoelectric effect HBM: indicates the human mode of electrostatic discharge HTSL: High temperature storage life HTOL: High temperature working life HCL: hot carrier injection effect IWV: Internal hygroscopic test LI: Pin integrity LT: Cover plate torque test LU: Latching effect MM: indicates the mechanical mode of electrostatic discharge MS: Mechanical shock NBTI: rich bias temperature instability PAT: Process average test PC: Preprocessing PD: physical size PTC: power temperature cycle SBA: Statistical yield analysis SBS: tin ball shearing SC: Short circuit feature SD: weldability SER: Soft error rate SM: Stress migration TC: temperature cycle TDDB: Time through dielectric breakdown TEST: Function parameters before and after stress test TH: damp and heat without bias THB, HAST: Temperature, humidity or high accelerated stress tests with applied bias UHST: High acceleration stress test without bias VFV: random vibration WBS: welding wire cutting WBP: welding wire tension Temperature and humidity test conditions finishing: THB(temperature and humidity with applied bias, according to JESD22 A101) : 85℃/85%R.H./1000h/bias HAST(High Accelerated stress test according to JESD22 A110) : 130℃/85%R.H./96h/bias, 110℃/85%R.H./264h/bias AC pressure cooker, according to JEDS22-A102:121 ℃/100%R.H./96h UHST High acceleration stress test without bias, according to JEDS22-A118, equipment: HAST-S) : 110℃/85%R.H./264h TH no bias damp heat, according to JEDS22-A101, equipment: THS) : 85℃/85%R.H./1000h TC(temperature cycle, according to JEDS22-A104, equipment: TSK, TC) : Level 0: -50℃←→150℃/2000cycles Level 1: -50℃←→150℃/1000cycles Level 2: -50℃←→150℃/500cycles Level 3: -50℃←→125℃/500cycles Level 4: -10℃←→105℃/500cycles PTC(power temperature cycle, according to JEDS22-A105, equipment: TSK) : Level 0: -40℃←→150℃/1000cycles Level 1: -65℃←→125℃/1000cycles Level 2 to 4: -65℃←→105℃/500cycles HTSL(High temperature storage life, JEDS22-A103, device: OVEN) : Plastic package parts: Grade 0:150 ℃/2000h Grade 1:150 ℃/1000h Grade 2 to 4:125 ℃/1000h or 150℃/5000h Ceramic package parts: 200℃/72h HTOL(High temperature working life, JEDS22-A108, equipment: OVEN) : Grade 0:150 ℃/1000h Class 1:150℃/408h or 125℃/1000h Grade 2:125℃/408h or 105℃/1000h Grade 3:105℃/408h or 85℃/1000h Class 4:90℃/408h or 70℃/1000h   ELFR(Early Life failure Rate, AEC-Q100-008) : Devices that pass this stress test can be used for other stress tests, general data can be used, and tests before and after ELFR are performed under mild and high temperature conditions.
    Mehr lesen
  • Zuverlässige Umweltprüfgeräte kombiniert mit mehrspurigen Temperaturkontroll- und Erkennungsanwendungen Zuverlässige Umweltprüfgeräte kombiniert mit mehrspurigen Temperaturkontroll- und Erkennungsanwendungen
    Oct 12, 2024
    Zuverlässige Umweltprüfgeräte kombiniert mit mehrspurigen Temperaturkontroll- und ErkennungsanwendungenZu den Umwelttestgeräten gehören eine Testkammer für konstante Temperatur und Luftfeuchtigkeit, eine Testkammer für Heiß- und Kälteschocks, eine Testkammer für Temperaturzyklen und ein Ofen ohne Wind. Diese Testgeräte befinden sich alle in einer simulierten Umgebung, in der Temperatur und Feuchtigkeit auf das Produkt einwirken, um dies herauszufinden Bei der Konstruktion, Produktion, Lagerung, dem Transport und dem Verwendungsprozess können Produktmängel auftreten. Bisher wurde nur die Lufttemperatur im Testbereich simuliert. In den neuen internationalen Standards und den neuen Testbedingungen der internationalen Fabrik basieren die Anforderungen jedoch auf der Lufttemperatur ist nicht. Es handelt sich um die Oberflächentemperatur des Testprodukts. Darüber hinaus sollte die Oberflächentemperatur auch während des Testprozesses für die Nachanalyse gemessen und synchron aufgezeichnet werden. Die entsprechenden Umweltprüfgeräte sollten mit der Oberflächentemperaturkontrolle kombiniert werden und die Anwendung der Oberflächentemperaturmessung wird wie folgt zusammengefasst. Testkammer-Testtisch mit konstanter Temperatur und Luftfeuchtigkeit, Temperaturerkennungsanwendung: Beschreibung: Prüfkammer mit konstanter Temperatur und Luftfeuchtigkeit im Prüfprozess, kombiniert mit mehrspuriger Temperaturerkennung, hoher Temperatur und Luftfeuchtigkeit, Kondensation (Kondensation), kombinierter Temperatur und Luftfeuchtigkeit, langsamer Temperaturzyklus ... Während des Prüfvorgangs ist der Sensor Wird auf der Oberfläche des Testprodukts angebracht und kann zur Messung der Oberflächentemperatur oder der Innentemperatur des Testprodukts verwendet werden. Durch dieses mehrspurige Temperaturerfassungsmodul können die eingestellten Bedingungen, die tatsächliche Temperatur und Luftfeuchtigkeit, die Oberflächentemperatur des Testprodukts sowie die gleiche Messung und Aufzeichnung in eine synchrone Kurvendatei zur anschließenden Speicherung und Analyse integriert werden.Anwendungen zur Kontrolle und Erkennung der Oberflächentemperatur der Thermoschock-Testkammer: [Verweilzeit basierend auf der Oberflächentemperaturkontrolle], [Messaufzeichnung der Oberflächentemperatur des Temperaturschockprozesses] Beschreibung: Der 8-Schienen-Temperatursensor wird an der Oberfläche des Testprodukts angebracht und auf den Temperaturschockprozess angewendet. Die Verweilzeit kann entsprechend dem Erreichen der Oberflächentemperatur rückwärts gezählt werden. Während des Aufprallvorgangs können die Setzbedingungen, die Prüftemperatur, die Oberflächentemperatur des Prüfprodukts sowie die gleiche Messung und Aufzeichnung in eine synchrone Kurve integriert werden.Anwendung zur Steuerung und Erkennung der Oberflächentemperatur der Temperaturzyklustestkammer: [Die Temperaturvariabilität und Verweilzeit des Temperaturzyklus werden entsprechend der Oberflächentemperatur des Testprodukts gesteuert.] Beschreibung: Der Temperaturzyklustest unterscheidet sich vom Temperaturschocktest. Der Temperaturschocktest nutzt die maximale Energie des Systems, um Temperaturänderungen zwischen hohen und niedrigen Temperaturen durchzuführen, und seine Temperaturänderungsrate beträgt bis zu 30 ~ 40℃/min. Der Temperaturzyklustest erfordert einen Prozess mit hohen und niedrigen Temperaturänderungen, dessen Temperaturvariabilität eingestellt und gesteuert werden kann. Die neue Spezifikation und die Testbedingungen internationaler Hersteller erfordern jedoch mittlerweile, dass sich die Temperaturvariabilität auf die Oberflächentemperatur des Testprodukts bezieht, nicht auf die Lufttemperatur, und die Temperaturvariabilitätskontrolle der aktuellen Temperaturzyklusspezifikation. Laut Testprodukt sind die Oberflächenspezifikationen [JEDEC-22A-104F, IEC60749-25, IPC9701, ISO16750, AEC-Q100, LV124, GMW3172]... Darüber hinaus kann auch die Verweilzeit von hohen und niedrigen Temperaturen zugrunde gelegt werden die Testoberfläche und nicht die Lufttemperatur.Anwendungen zur Kontrolle und Erkennung der Oberflächentemperatur der Temperatur-Zyklus-Stress-Screening-Prüfkammer: Anweisungen: Temperaturzyklus-Stress-Screening-Testmaschine, kombiniert mit Multi-Rail-Temperaturmessung. Bei der Temperaturvariabilität des Stress-Screenings können Sie zusätzlich [Lufttemperatur] oder [Oberflächentemperatur des Testprodukts] verwenden, um die Temperaturvariabilität zu steuern. Im Hoch- und Niedertemperatur-Residentprozess kann der Zeitreziprokwert auch entsprechend der Oberfläche des Testprodukts gesteuert werden. In Übereinstimmung mit den relevanten Spezifikationen (GJB1032, IEST) und den Anforderungen internationaler Organisationen, gemäß der Definition von GJB1032 im Stress-Screening-Verweilzeit- und Temperaturmesspunkt, 1. Die Anzahl der am Produkt befestigten Thermoelemente darf nicht geringer sein als 3, und der Temperaturmesspunkt des Kühlsystems darf nicht weniger als 6 betragen, 2. Stellen Sie sicher, dass die Temperatur von 2/3 Thermoelementen am Produkt zusätzlich auf ±10℃ eingestellt ist, entsprechend den Anforderungen von IEST(International). (Association for Environmental Science and Technology) sollte die Verweilzeit der Temperaturstabilisierungszeit plus 5 Minuten oder der Leistungstestzeit entsprechen. Anwendung zur Oberflächentemperaturerkennung im Ofen ohne Luft (natürliche Konvektionsprüfkammer): Beschreibung: Durch die Kombination eines windstillen Ofens (Testkammer mit natürlicher Konvektion) und eines mehrspurigen Temperaturerkennungsmoduls wird die Temperaturumgebung ohne Lüfter (natürliche Konvektion) erzeugt und der entsprechende Temperaturerkennungstest integriert. Diese Lösung kann auf den tatsächlichen Umgebungstemperaturtest elektronischer Produkte angewendet werden (z. B.: Cloud-Server, 5G, Innenraum von Elektrofahrzeugen, Innenraum ohne Klimaanlage, Solarwechselrichter, großer LCD-Fernseher, Heim-Internet-Sharer, Büro 3C, Laptop, Desktop). , Spielekonsole usw.).  
    Mehr lesen
  • Wechselrichter-Zuverlässigkeitstest Wechselrichter-Zuverlässigkeitstest
    Oct 11, 2024
    Wechselrichter-ZuverlässigkeitstestWechselrichter – Zuverlässigkeitstest, auch Spannungswandler genannt. Seine Funktion besteht darin, Gleichstrom-Niederspannung in Wechselstrom-Hochspannung umzuwandeln. Einige elektronische Geräte müssen mit Wechselstrom betrieben werden, wir stellen jedoch Gleichstrom zur Verfügung. Zu diesem Zeitpunkt müssen Sie den Wechselrichter direkt verwenden Strom in Wechselstrom um, um die elektronischen Teile anzutreiben. Wechselrichter – Zuverlässigkeitstest, auch Spannungswandler genannt. Seine Funktion besteht darin, Gleichstrom-Niederspannung in Wechselstrom-Hochspannung umzuwandeln. Einige elektronische Geräte müssen mit Wechselstrom betrieben werden, wir stellen jedoch Gleichstrom zur Verfügung. Zu diesem Zeitpunkt müssen Sie den Wechselrichter direkt verwenden Strom in Wechselstrom um, um die elektronischen Teile anzutreiben.Relevante Testbedingungen:ArtikelTemperaturZeitandereErster Test bei normaler Temperatur25 ℃ZEIT≥2 Stunden-Ersttest bei niedriger Temperatur0 ℃ oder -5 °CZEIT≥2 Stunden-Hochtemperatur-Ersttest60℃ZEIT≥2 Stunden-Test bei hoher Temperatur und hoher Luftfeuchtigkeit40℃/95 % relative Luftfeuchtigkeit240 Stunden-Hochtemperatur-Lagertest70℃ZEIT≥96 Stunden oder 240 Stunden-Lagerungstest bei niedriger Temperatur -1-20°CZEIT≥96 Stunden-Lagerungstest bei niedriger Temperatur -2-40℃240 Stunden-Lagerungstest bei hoher Temperatur und hoher Luftfeuchtigkeit40℃/90 % relative LuftfeuchtigkeitZEIT≥96 Stunden-Temperaturzyklustest-20℃~ 70℃5 ZyklusRaumtemperatur ↓-20 ℃ (4 Stunden)↓ Raumtemperatur (90 % relative Luftfeuchtigkeit, 4 Stunden)↓70 °C (4 Stunden)↓ Raumtemperatur (4 Stunden)Hochtemperatur-Belastungstest55 ℃Äquivalente Belastung, 1.000 Stunden-Lebenstest40°CMTBF≥40000 Stunden-Ein-/Aus-Test (Ein-/Ausschalten)--1 Minute: ein, 1 Minute: aus, 5.000 Zyklen bei gleichwertiger LastVibrationstest--Beschleunigung 3q, Frequenz 10 ~ 55 Hz, X, Y, Z drei Richtungen jeweils 10 Minuten, insgesamt 30 MinutenSchlagtest--Beschleunigung von 80 g, jeweils 10 ms, dreimal in X-, Y- und Z-RichtungHinweis 1: Das getestete Modul sollte vor dem Test eine Stunde lang bei normaler Temperatur (15–35 °C, 45–65 % relative Luftfeuchtigkeit) aufgestellt werdenAnwendbare Ausrüstung:1. Testkammer für hohe und niedrige Temperaturen2. Testkammer für hohe Temperaturen und hohe Luftfeuchtigkeit3. Schnelle Temperaturzyklustestkammer        
    Mehr lesen
  • IEC 61646-Teststandard für photoelektrische Dünnschicht-Solarmodule IEC 61646-Teststandard für photoelektrische Dünnschicht-Solarmodule
    Oct 07, 2024
    IEC 61646-Teststandard für photoelektrische Dünnschicht-SolarmoduleDurch die Diagnosemessung, elektrische Messung, Bestrahlungsprüfung, Umweltprüfung, mechanische Prüfung fünf Arten von Prüf- und Inspektionsmodi bestätigen Sie die Designbestätigung und bilden die Zulassungsanforderungen für Dünnschicht-Solarenergie und bestätigen, dass das Modul in der allgemeinen Klimaumgebung betrieben werden kann seit langem von der Spezifikation gefordert.IEC 61646-10.1 SichtprüfungsverfahrenZiel: Prüfung auf optische Mängel am Modul.Leistung bei STC unter IEC 61646-10.2 Standard-TestbedingungenZiel: Testen Sie die elektrische Leistung des Moduls unter Last mit natürlichem Licht oder einem Simulator der Klasse A unter Standardtestbedingungen (Batterietemperatur: 25 ± 2 °C, Bestrahlungsstärke: 1000 Wm^-2, Standard-Sonnenspektrum-Bestrahlungsverteilung gemäß IEC891). ändern.IEC 61646-10.3 IsolationstestZiel: Prüfung, ob eine gute Isolierung zwischen den stromführenden Teilen und dem Rahmen des Moduls bestehtIEC 61646-10.4 Messung von TemperaturkoeffizientenZiel: Prüfung des aktuellen Temperaturkoeffizienten und des Spannungstemperaturkoeffizienten im Modultest. Der gemessene Temperaturkoeffizient gilt nur für die im Test verwendete Strahlung. Bei linearen Modulen gilt der Wert innerhalb von ±30 % dieser Einstrahlung. Dieses Verfahren ist eine Ergänzung zu IEC891, das die Messung dieser Koeffizienten von einzelnen Zellen in einer repräsentativen Charge spezifiziert. Der Temperaturkoeffizient des Dünnschichtsolarzellenmoduls hängt vom Wärmebehandlungsprozess des jeweiligen Moduls ab. Wenn es um den Temperaturkoeffizienten geht, sollten die Bedingungen der thermischen Prüfung und die Bestrahlungsergebnisse des Prozesses angegeben werden.IEC 61646-10.5 Messung der nominalen Betriebszellentemperatur (NOCT)Ziel: Testen des NOCT des ModulsIEC 61646-10.6 Leistung bei NOCTZiel: Wenn die Nennbetriebstemperatur und die Einstrahlungsstärke der Batterie 800 Wm^-2 betragen, variiert die elektrische Leistung des Moduls unter der Standardbedingung der Sonnenspektrum-Einstrahlungsverteilung mit der Last.IEC 61646-10.7 Leistung bei geringer EinstrahlungZiel: Bestimmung der elektrischen Leistung von Modulen unter Last bei natürlichem Licht oder einem Klasse-A-Simulator bei 25 °C und 200 Wm^-2 (gemessen mit geeigneter Referenzzelle).IEC 61646-10.8 Prüfung der FreibewitterungZiel: Eine unbekannte Bewertung der Widerstandsfähigkeit des Moduls gegenüber Außenbedingungen vorzunehmen und etwaige Verschlechterungseffekte aufzuzeigen, die durch das Experiment oder den Test nicht festgestellt werden konnten.IEC 61646-10.9 Hot-Spot-TestZiel: Bestimmung der Fähigkeit des Moduls, thermischen Einflüssen standzuhalten, wie z. B. Alterung des Verpackungsmaterials, Risse in der Batterie, interne Verbindungsfehler, lokale Verschattung oder fleckige Kanten können solche Defekte verursachen.IEC 61646-10.10 UV-Test (UV-Test)Ziel: Um die Widerstandsfähigkeit des Moduls gegen ultraviolette (UV) Strahlung zu bestätigen, wird der neue UV-Test in IEC1345 beschrieben. Bei Bedarf sollte das Modul vor der Durchführung dieses Tests Licht ausgesetzt werden.IEC61646-10.11 Thermowechseltest (Thermowechseltest)Ziel: Bestätigung der Fähigkeit des Moduls, thermischer Inhomogenität, Ermüdung und anderen Belastungen aufgrund wiederholter Temperaturänderungen zu widerstehen. Das Modul sollte vor diesem Test getempert werden. [Pre-I-V-Test] bezieht sich auf den Test nach dem Glühen. Achten Sie darauf, das Modul vor dem letzten I-V-Test keinem Licht auszusetzen.Testanforderungen:A. Instrumente zur Überwachung der elektrischen Kontinuität innerhalb jedes Moduls während des gesamten TestprozessesB. Überwachen Sie die Isolationsintegrität zwischen einem der vertieften Enden jedes Moduls und dem Rahmen oder StützrahmenC. Zeichnen Sie die Modultemperatur während des Tests auf und überwachen Sie eventuell auftretende Unterbrechungen oder Erdungsfehler (keine zeitweise Unterbrechungen oder Erdungsfehler während des Tests).d. Der Isolationswiderstand muss die gleichen Anforderungen wie bei der Erstmessung erfüllenIEC 61646-10.12 Feuchtigkeits-GefrierzyklustestZweck: Um die Widerstandsfähigkeit des Moduls gegenüber dem Einfluss der nachfolgenden Minustemperatur bei hoher Temperatur und Luftfeuchtigkeit zu testen, handelt es sich nicht um einen Thermoschocktest. Vor Erhalt des Tests sollte das Modul geglüht und einem Thermozyklustest unterzogen werden. [ [Pre-IV-Test] bezieht sich auf den Wärmezyklus nach dem Test. Achten Sie darauf, das Modul vor dem letzten I-V-Test keinem Licht auszusetzen.Testanforderungen:A. Instrumente zur Überwachung der elektrischen Kontinuität innerhalb jedes Moduls während des gesamten TestprozessesB. Überwachen Sie die Isolationsintegrität zwischen einem der vertieften Enden jedes Moduls und dem Rahmen oder StützrahmenC. Zeichnen Sie die Modultemperatur während des Tests auf und überwachen Sie eventuell auftretende Unterbrechungen oder Erdungsfehler (keine zeitweise Unterbrechungen oder Erdungsfehler während des Tests).D. Der Isolationswiderstand muss die gleichen Anforderungen wie bei der Erstmessung erfüllenIEC 61646-10.13 Feuchte-Hitze-Test (Feuchte Hitze)Ziel: Testen der Widerstandsfähigkeit des Moduls gegen langfristiges Eindringen von FeuchtigkeitPrüfanforderungen: Der Isolationswiderstand muss die gleichen Anforderungen wie bei der Erstmessung erfüllenIEC 61646-10.14 Robustheit von AnschlüssenZiel: Feststellung, ob die Befestigung zwischen dem Leitungsende und dem Leitungsende am Modulkörper der Kraft während der normalen Installation und des normalen Betriebs standhalten kann.Verdrehungstest nach IEC 61646-10.15Ziel: Mögliche Probleme erkennen, die durch die Modulinstallation auf einer unvollständigen Struktur verursacht werdenIEC 61646-10.16 Mechanischer BelastungstestZweck: Der Zweck dieses Tests besteht darin, die Fähigkeit des Moduls zu bestimmen, Wind, Schnee, Eis oder statischen Belastungen standzuhaltenIEC 61646-10.17 HageltestZiel: Überprüfung der Schlagfestigkeit des Moduls gegenüber HagelIEC 61646-10.18 LichteinweichtestZiel: Stabilisierung der elektrischen Eigenschaften von Dünnschichtmodulen durch Simulation der SonneneinstrahlungIEC 61646-10.19 Glühtests (Glühen)Ziel: Das Folienmodul wird vor dem Verifizierungstest getempert. Wenn es nicht geglüht wird, kann die Erwärmung während des nachfolgenden Testvorgangs die durch andere Ursachen verursachte Dämpfung überdecken.IEC 61646-10.20 NassleckstromtestZweck: Bewertung der Isolierung des Moduls unter nassen Betriebsbedingungen und Überprüfung, dass keine Feuchtigkeit aus Regen, Nebel, Tau oder schmelzendem Schnee in die stromführenden Teile des Modulstromkreises gelangt, was zu Korrosion, Erdschluss oder Sicherheitsrisiken führen kann.
    Mehr lesen
  • IEEE1513-Temperaturzyklustest, Feuchtigkeits-Gefriertest und thermischer Feuchtigkeitstest 1 IEEE1513-Temperaturzyklustest, Feuchtigkeits-Gefriertest und thermischer Feuchtigkeitstest 1
    Oct 07, 2024
    IEEE1513-Temperaturzyklustest, Feuchtigkeits-Gefriertest und thermischer Feuchtigkeitstest 1Zu den Prüfanforderungen für die Umweltzuverlässigkeit von Zellen, Empfängern und Modulen konzentrierter Solarzellen gehören eigene Prüfmethoden und Prüfbedingungen im Temperaturzyklustest, im Feuchtigkeits-Gefriertest und im Wärme-Feuchtigkeits-Test, und es gibt auch Unterschiede in der Qualitätsbestätigung danach der Test. Daher enthält IEEE1513 in der Spezifikation drei Tests zum Temperaturzyklustest, zum Feuchtigkeitsgefriertest und zum thermischen Feuchtigkeitstest, und die Unterschiede und Testmethoden werden für jedermann als Referenz erläutert.Referenzquelle: IEEE Std 1513-2001IEEE1513-5.7 Wärmezyklustest IEEE1513-5.7 WärmezyklustestZiel: Feststellung, ob das Empfangsende dem durch den Unterschied in der Wärmeausdehnung zwischen den Teilen und dem Verbindungsmaterial, insbesondere der Lötverbindung und der Gehäusequalität, verursachten Ausfall ordnungsgemäß standhalten kann. Hintergrund: Temperaturwechseltests konzentrierter Solarzellen zeigen Schweißermüdung von Kupferkühlkörpern und erfordern eine vollständige Ultraschallübertragung, um Risswachstum in den Zellen zu erkennen (SAND92-0958 [B5]).Die Rissausbreitung ist eine Funktion der Temperaturzykluszahl, der anfänglichen vollständigen Lötverbindung, des Lötverbindungstyps zwischen der Batterie und dem Kühler aufgrund des Wärmeausdehnungskoeffizienten und der Temperaturzyklusparameter, nach dem Wärmezyklustest zur Überprüfung der Empfängerstruktur des Qualität der Verpackung und des Isoliermaterials. Für das Programm gibt es zwei Testpläne, die wie folgt getestet werden:Programm A und Programm BVerfahren A: Testen Sie den Widerstand des Empfängers bei thermischer Belastung, die durch Unterschiede in der thermischen Ausdehnung verursacht wirdVerfahren B: Temperaturzyklus vor dem FeuchtigkeitsgefriertestVor der Vorbehandlung wird betont, dass die anfänglichen Mängel des Empfangsmaterials durch tatsächliches Nassgefrieren verursacht werden. Zur Anpassung an unterschiedliche konzentrierte Solarenergiedesigns können Temperaturzyklustests von Programm A und Programm B überprüft werden, die in Tabelle 1 und Tabelle 2 aufgeführt sind.1. Diese Empfänger sind mit Solarzellen ausgestattet, die direkt mit Kupferstrahlern verbunden sind. Die erforderlichen Bedingungen sind in der Tabelle in der ersten Zeile aufgeführt2. Dadurch wird sichergestellt, dass potenzielle Fehlermechanismen entdeckt werden, die zu Fehlern im Entwicklungsprozess führen können. Diese Konstruktionen nutzen unterschiedliche Methoden und können alternative Bedingungen verwenden, wie in der Tabelle gezeigt, um den Kühler der Batterie zu lösen.Tabelle 3 zeigt, dass der Empfangsteil vor der Alternative einen Temperaturzyklus des Programms B durchführt.Da Programm B auf der Empfängerseite hauptsächlich andere Materialien testet, werden zu allen Designs Alternativen angebotenTabelle 1 – Temperaturzyklus-Verfahrenstest für EmpfängerProgramm A – ThermozyklusOptionMaximale TemperaturGesamtzahl der ZyklenBewerbung aktuellErforderliches DesignTCR-A110℃250NoDie Batterie ist direkt mit dem Kupferkühler verschweißtTCR-B90℃500NoAndere DesignaufzeichnungenTCR-C90℃250I(angewandt) = IscAndere DesignaufzeichnungenTabelle 2 – Temperaturzyklus-Verfahrenstest des EmpfängersVerfahren B – Temperaturzyklus vor dem NassgefriertestOptionMaximale TemperaturGesamtzahl der ZyklenBewerbung aktuellErforderliches DesignHFR-A 110℃100NoDokumentation aller Entwürfe HFR-B 90℃200NoDokumentation aller Entwürfe HFR-C 90℃100I(angewandt) = IscDokumentation aller Entwürfe Verfahren: Das Empfangsende wird einem Temperaturzyklus zwischen -40 °C und der Maximaltemperatur ausgesetzt (gemäß dem Testverfahren in Tabelle 1 und Tabelle 2). Der Zyklustest kann in einer oder zwei Boxen durchgeführt werden Gas-Temperaturschock-Prüfkammer, sollte der Flüssigkeitsschockzyklus nicht verwendet werden, die Verweilzeit beträgt mindestens 10 Minuten und die hohe und niedrige Temperatur sollte innerhalb der Anforderungen von ±5 °C liegen. Die Zyklusfrequenz sollte nicht mehr als 24 Zyklen pro Tag und nicht weniger als 4 Zyklen pro Tag betragen, die empfohlene Häufigkeit beträgt 18 Mal pro Tag.Die Anzahl der thermischen Zyklen und die für die beiden Proben erforderliche Höchsttemperatur finden Sie in Tabelle 3 (Verfahren B in Abbildung 1). Anschließend werden eine Sichtprüfung und ein Test der elektrischen Eigenschaften durchgeführt (siehe 5.1 und 5.2). Diese Proben werden einem Nassgefriertest gemäß 5.8 unterzogen, und ein größerer Empfänger wird sich auf 4.1.1 beziehen (dieses Verfahren ist in Abbildung 2 dargestellt).Hintergrund: Der Zweck des Temperaturzyklustests besteht darin, den Test zu beschleunigen, der im kurzfristigen Fehlermechanismus auftritt, bevor ein Hardwarefehler bei konzentrierender Solarenergie erkannt wird. Daher beinhaltet der Test die Möglichkeit, einen großen Temperaturunterschied über das Modul hinaus zu erkennen Die Obergrenze des Temperaturzyklus von 60 °C richtet sich nach der Erweichungstemperatur vieler Modul-Acryllinsen, bei anderen Bauformen nach der Temperatur des Moduls. Die Obergrenze des Temperaturzyklus liegt bei 90 °C (siehe Tabelle 3)Tabelle 3 – Liste der Testbedingungen für ModultemperaturzyklenVerfahren B Temperaturzyklus-Vorbehandlung vor dem NassgefriertestOptionMaximale TemperaturGesamtzahl der ZyklenBewerbung aktuellErforderliches DesignTCM-A 90℃50NoDokumentation aller Entwürfe TEM-B 60℃200NoMöglicherweise ist ein Kunststoff-Linsenmoduldesign erforderlich  
    Mehr lesen
  • IEEE1513-Temperaturzyklustest und Nassgefriertest, Feuchtigkeits-Wärmetest 2 IEEE1513-Temperaturzyklustest und Nassgefriertest, Feuchtigkeits-Wärmetest 2
    Sep 29, 2024
    IEEE1513-Temperaturzyklustest und Nassgefriertest, Feuchtigkeits-Wärmetest 2Schritte:Beide Module führen gemäß ASTM E1171-99 200 Temperaturzyklen zwischen -40 °C und 60 °C oder 50 Temperaturzyklen zwischen -40 °C und 90 °C durch.Notiz:ASTM E1171-01: Testmethode für den photoelektrischen Modul bei Schleifentemperatur und LuftfeuchtigkeitDie relative Luftfeuchtigkeit muss nicht kontrolliert werden.Die Temperaturschwankung sollte 100℃/Stunde nicht überschreiten.Die Verweilzeit sollte mindestens 10 Minuten betragen und die hohe und niedrige Temperatur sollte innerhalb der Anforderung von ±5℃ liegenAnforderungen:A. Das Modul wird nach dem Zyklustest auf offensichtliche Schäden oder Verschlechterungen untersucht.B. Das Modul darf keine Risse oder Verwerfungen aufweisen und das Dichtungsmaterial darf sich nicht ablösen.C. Bei einer selektiven elektrischen Funktionsprüfung sollte die Ausgangsleistung unter gleichen Bedingungen vieler ursprünglicher Grundparameter 90 % oder mehr betragenHinzugefügt:IEEE1513-4.1.1 Modul-Repräsentant oder Empfänger-Testmuster: Wenn ein komplettes Modul oder ein Empfänger zu groß ist, um in eine bestehende Umwelttestkammer zu passen, kann das Modul-Repräsentativ oder Empfänger-Testmuster durch ein Modul oder einen Empfänger in voller Größe ersetzt werden.Diese Testmuster sollten speziell mit einem Ersatzempfänger zusammengebaut werden. Wenn sie eine Reihe von Zellen enthalten, die an einen Empfänger voller Größe angeschlossen sind, sollte die Batteriereihe lang sein und mindestens zwei Bypass-Dioden enthalten, aber drei Zellen sind auf jeden Fall relativ wenige , die zusammenfasst, dass die Einbeziehung von Links mit dem Ersatzempfängerterminal mit dem vollständigen Modul identisch sein sollte.Der Ersatzempfänger muss Komponenten enthalten, die für die anderen Module repräsentativ sind, einschließlich Objektiv/Objektivgehäuse, Empfänger/Empfängergehäuse, hinteres Segment/hintere Segmentlinse, Gehäuse und Empfängeranschluss. Die Verfahren A, B und C werden getestet.Für das Testverfahren D im Freien sollten zwei Module voller Größe verwendet werden.IEEE1513-5.8 Feuchtigkeits-Gefrierzyklustest Feuchtigkeits-GefrierzyklustestEmpfängerZweck:Es soll festgestellt werden, ob das Aufnahmeteil ausreichend Korrosionsschäden standhält und ob die Fähigkeit zur Feuchtigkeitsausdehnung zur Ausdehnung der Materialmoleküle besteht. Darüber hinaus ist gefrorener Wasserdampf die Belastung für die FehlerursachenermittlungVerfahren:Die Proben werden nach dem Temperaturwechsel gemäß Tabelle 3 getestet und einem Nassgefriertest bei 85 °C und -40 °C, einer Luftfeuchtigkeit von 85 % und 20 Zyklen unterzogen. Gemäß ASTM E1171-99 muss sich das Empfangsende mit großem Volumen auf 4.1.1 beziehenAnforderungen:Der Empfangsteil muss die Anforderungen von 5.7 erfüllen. Verlassen Sie den Umgebungstank innerhalb von 2 bis 4 Stunden, und der Aufnahmeteil sollte die Anforderungen der Hochspannungsisolationsleckageprüfung erfüllen (siehe 5.4).ModulZweck:Stellen Sie fest, ob das Modul über ausreichende Kapazität verfügt, um schädlicher Korrosion oder der Vergrößerung von Materialbindungsunterschieden zu widerstehenVerfahren: Beide Module werden Nassgefriertests für 20 Zyklen, 4 oder 10 Zyklen bei 85 °C gemäß ASTM E1171-99 unterzogen.Bitte beachten Sie, dass die maximale Temperatur von 60 °C niedriger ist als der Nassgefriertestabschnitt am Empfangsende.Eine vollständige Hochspannungsisolationsprüfung (siehe 5.4) wird nach einem zwei- bis vierstündigen Zyklus abgeschlossen. Im Anschluss an die Hochspannungsisolationsprüfung wird die elektrische Leistungsprüfung gemäß 5.2 durchgeführt. In großen Modulen können auch Module absolviert werden, siehe 4.1.1.Anforderungen:A. Das Modul prüft nach dem Test auf offensichtliche Schäden oder Verschlechterungen und zeichnet diese auf.B. Das Modul darf keine Risse, Verformungen oder starke Korrosion aufweisen. Es dürfen keine Dichtungsschichten vorhanden sein.C. Das Modul muss den Hochspannungsisolationstest gemäß IEEE1513-5.4 bestehen.Bei einer selektiven elektrischen Funktionsprüfung kann die Ausgangsleistung unter gleichen Bedingungen vieler ursprünglicher Grundparameter 90 % oder mehr erreichenIEEE1513-5.10 Feuchte-Hitze-Test IEEE1513-5.10 Feuchte-Hitze-TestObjektiv: Zur Bewertung der Wirkung und Fähigkeit des Empfängerendes, einer langfristigen Feuchtigkeitsinfiltration standzuhalten.Verfahren: Der Testempfänger wird in einer Umgebungstestkammer mit 85 % ±5 % relativer Luftfeuchtigkeit und 85 °C ±2 °C getestet, wie in ASTM E1171-99 beschrieben. Dieser Test sollte in 1000 Stunden abgeschlossen sein, es können jedoch weitere 60 Stunden hinzugefügt werden, um einen Leckagetest der Hochspannungsisolation durchzuführen. Der Empfangsteil kann zum Testen verwendet werden.Anforderungen: Das Empfangsende muss die Feuchtwärme-Testkammer für 2 bis 4 Stunden verlassen, um den Leckagetest der Hochspannungsisolierung (siehe 5.4) und die Sichtprüfung (siehe 5.1) zu bestehen. Bei einer selektiven elektrischen Funktionsprüfung sollte die Ausgangsleistung unter gleichen Bedingungen vieler ursprünglicher Grundparameter 90 % oder mehr betragen.Test- und Inspektionsverfahren für IEEE1513-ModuleIEEE1513-5.1 Visuelles InspektionsverfahrenZweck: Ermittlung des aktuellen visuellen Status, damit der Empfänger vergleichen kann, ob er jeden Test besteht, und garantieren kann, dass er die Anforderungen für weitere Tests erfüllt.IEEE1513-5.2 Elektrischer LeistungstestZiel: Beschreibung der elektrischen Eigenschaften des Testmoduls und des Empfängers und Bestimmung ihrer Spitzenausgangsleistung.IEEE1513-5.3 ErdungskontinuitätstestZweck: Überprüfung der elektrischen Kontinuität zwischen allen freiliegenden leitenden Komponenten und dem Erdungsmodul.IEEE1513-5.4 Elektrischer Isolationstest (Trocken-Hi-Po)Zweck: Sicherstellen, dass die elektrische Isolierung zwischen dem Schaltkreismodul und allen externen Kontakt-leitenden Teilen ausreichend ist, um Korrosion zu verhindern und die Sicherheit der Arbeiter zu gewährleisten.IEEE1513-5.5 NassisolationswiderstandstestZweck: Überprüfung, ob Feuchtigkeit nicht in den elektronisch aktiven Teil des Empfängerendes eindringen kann, wo sie Korrosion oder Erdschluss verursachen oder Gefahren für die menschliche Sicherheit erkennen könnte.IEEE1513-5.6 WassersprühtestZiel: Der Feld-Nass-Widerstandstest (FWRT) bewertet die elektrische Isolierung von Solarzellenmodulen basierend auf den Feuchtigkeitsbetriebsbedingungen. Dieser Test simuliert starken Regen oder Tau auf der Konfiguration und Verkabelung, um sicherzustellen, dass keine Feuchtigkeit in den verwendeten Array-Schaltkreis eindringt, was die Korrosion erhöhen, Erdschlüsse verursachen und elektrische Sicherheitsrisiken für Personal oder Geräte darstellen kann.IEEE1513-5.7 Thermozyklustest (Thermozyklustest)Ziel: Feststellung, ob das Empfängerende dem Ausfall, der durch die unterschiedliche Wärmeausdehnung von Teilen und Verbindungsmaterialien verursacht wird, ordnungsgemäß standhalten kann.IEEE1513-5.8 Feuchtigkeits-GefrierzyklustestZiel: Feststellung, ob das Aufnahmeteil ausreichend beständig gegen Korrosionsschäden ist und die Fähigkeit zur Feuchtigkeitsausdehnung besitzt, um die Materialmoleküle auszudehnen. Darüber hinaus ist gefrorener Wasserdampf die Belastung für die Fehlerursachenermittlung.IEEE1513-5.9 Robustheitstest für TerminierungenZweck: Um die Drähte und Anschlüsse sicherzustellen, wenden Sie externe Kräfte auf jedes Teil an, um sicherzustellen, dass sie stark genug sind, um normale Handhabungsverfahren aufrechtzuerhalten.IEEE1513-5.10 Feuchte-Hitze-Test (Feuchte-Hitze-Test)Ziel: Bewertung der Wirkung und Fähigkeit des Empfangsendes, einer langfristigen Feuchtigkeitsinfiltration standzuhalten. ICHEEE1513-5.11 HagelschlagtestZiel: Feststellung, ob eine Komponente, insbesondere der Kondensator, Hagel überstehen kann. IEEE1513-5.12 Bypass-Dioden-Thermotest (Bypass-Dioden-Thermotest)Ziel: Bewertung der Verfügbarkeit eines ausreichenden thermischen Designs und der Verwendung von Bypass-Dioden mit relativer Langzeitzuverlässigkeit, um die nachteiligen Auswirkungen der thermischen Verschiebungsdiffusion von Modulen zu begrenzen.IEEE1513-5.13 Hot-Spot-Ausdauertest (Hot-Spot-Ausdauertest)Ziel: Beurteilung der Fähigkeit von Modulen, periodischen Wärmeschwankungen im Laufe der Zeit standzuhalten, die häufig mit Fehlerszenarien wie stark gerissenen oder nicht übereinstimmenden Zellchips, einzelnen Ausfällen bei offenen Schaltkreisen oder ungleichmäßigen Schatten (schattierte Bereiche) einhergehen. ICHEEE1513-5.14 Außenexpositionstest (Außenexpositionstest)Zweck: Zur vorläufigen Beurteilung der Fähigkeit des Moduls, der Einwirkung von Außenumgebungen (einschließlich ultravioletter Strahlung) standzuhalten, darf die verminderte Wirksamkeit des Produkts durch Labortests nicht festgestellt werden.IEEE1513-5.15 Off-Axis-Beam-SchadenstestZweck: Sicherstellen, dass Teile des Moduls aufgrund der Modulabweichung des konzentrierten Sonnenstrahlungsstrahls zerstört werden. 
    Mehr lesen
  • Anwendung der TCT-Temperaturzykluskammer in der optischen Kommunikationsindustrie Anwendung der TCT-Temperaturzykluskammer in der optischen Kommunikationsindustrie
    Sep 27, 2024
    Anwendung der TCT-Temperaturzykluskammer in der optischen KommunikationsindustrieMit der Einführung von 5G spüren die Menschen die rasante Entwicklung des mobilen Internets, und auch die optische Kommunikationstechnologie als wichtige Grundlage wurde entwickelt. Derzeit hat China das längste Glasfasernetz der Welt aufgebaut, und mit der kontinuierlichen Weiterentwicklung der 5G-Technologie wird die optische Kommunikationstechnologie immer häufiger eingesetzt. Die Entwicklung der optischen Kommunikationstechnologie ermöglicht den Menschen nicht nur eine schnellere Netzwerkgeschwindigkeit, sondern bringt auch mehr Chancen und Herausforderungen mit sich. Beispielsweise erfordern neue Anwendungen wie Cloud-Gaming, VR und AR stabilere und schnellere Netzwerke, und die optische Kommunikationstechnologie kann diese Anforderungen erfüllen. Gleichzeitig hat die optische Kommunikationstechnologie auch mehr Innovationsmöglichkeiten mit sich gebracht, z. B. in der intelligenten medizinischen Versorgung, in der intelligenten Fertigung und in anderen Bereichen, in denen optische Kommunikationstechnologie eingesetzt wird, um einen effizienteren und genaueren Betrieb zu erreichen. Aber wissen Sie was? Diese erstaunliche Technologie kann nicht ohne die Anerkennung von Makro-Umwelttestgeräten erreicht werden, insbesondere der TC-Temperaturzyklus-Testkammer, bei der es sich um eine Testkammer mit schnellen Temperaturänderungen handelt. Dieser Artikel stellt Ihnen den Qualitätsmanager für Zuverlässigkeitstests für optische Kommunikationsprodukte vor – Labor für schnelle Temperaturänderungen.Lassen Sie uns zunächst kurz über die optische Kommunikation sprechen. Manche Leute sagen auch, dass es sich um optische Kommunikation handelt, also handelt es sich letztendlich nicht um ein Konzept. Tatsächlich handelt es sich dabei um zwei dasselbe Konzept. Bei der optischen Kommunikation handelt es sich um die Verwendung optischer Signale für die Kommunikationstechnologie. Die optische Kommunikation basiert auf optischer Kommunikation und erreicht eine Datenübertragung über optische Geräte wie optische Fasern und optische Kabel. Optische Kommunikationstechnologie ist weit verbreitet, beispielsweise bei unserer täglichen Nutzung von Glasfaserbreitband, optischen Sensoren für Mobiltelefone, optischen Messungen in der Luft- und Raumfahrt usw. Man kann sagen, dass die optische Kommunikation zu einem wichtigen Bestandteil des modernen Kommunikationsbereichs geworden ist. Warum ist optische Kommunikation so beliebt? Tatsächlich bietet es viele Vorteile, wie z. B. Hochgeschwindigkeitsübertragung, große Bandbreite, geringe Verluste usw.Zu den gängigen optischen Kommunikationsprodukten gehören: optische Kabel, Glasfaserschalter, Glasfasermodems usw., die zum Senden und Empfangen optischer Signale von Glasfaserkommunikationsgeräten verwendet werden; Temperatursensoren, Dehnungssensoren, Verschiebungssensoren usw. können verschiedene physikalische Größen in Echtzeit und andere optische Fasersensoren messen. Erbium-dotierter optischer Verstärker, Erbium-dotierter Ytterbium-dotierter optischer Verstärker, Raman-Verstärker usw. zur Erweiterung der Intensität optischer Signale und anderer optischer Verstärker; Helium-Neon-Laser, Diodenlaser, Faserlaser usw. sind Lichtquellen in der optischen Kommunikation, die zur Erzeugung von hochhellem, gerichtetem und kohärentem Laserlicht und anderen Lasern verwendet werden. Fotodetektoren, optische Begrenzer, Fotodioden usw. zum Empfang optischer Signale und deren Umwandlung in elektrische Signale und andere optische Empfänger; Optische Schalter, optische Modulatoren, programmierbare optische Arrays usw. werden zur Steuerung und Anpassung der optischen Signalübertragung und -weiterleitung sowie anderer optischer Controller verwendet. Nehmen wir als Beispiel Mobiltelefone und sprechen wir über die Anwendung optischer Kommunikationsprodukte auf Mobiltelefonen:1. Glasfaser: Glasfaser wird im Allgemeinen als Teil der Kommunikationsleitung verwendet. Aufgrund ihrer schnellen Übertragungsgeschwindigkeit werden Kommunikationssignale nicht leicht durch externe Störungen und andere Eigenschaften beeinflusst und sind zu einem wichtigen Bestandteil der Mobiltelefonkommunikation geworden.2. Photoelektrischer Wandler/optisches Modul: Photoelektrischer Wandler und optisches Modul sind Geräte, die optische Signale in elektrische Signale umwandeln und auch ein sehr wichtiger Bestandteil der Mobiltelefonkommunikation sind. Im Zeitalter der Hochgeschwindigkeitskommunikation wie 4G und 5G müssen Geschwindigkeit und Leistung solcher Geräte kontinuierlich verbessert werden, um den Anforderungen einer schnellen und stabilen Kommunikation gerecht zu werden.3. Kameramodul: Im Mobiltelefon umfasst das Kameramodul im Allgemeinen CCD, CMOS, optische Linse und andere Teile, und seine Qualität und Leistung haben auch einen erheblichen Einfluss auf die Qualität der optischen Kommunikation des Mobiltelefons.4. Display: Mobiltelefondisplays verwenden im Allgemeinen OLED, AMOLED und andere Technologien. Das Prinzip dieser Technologien hängt mit der Optik zusammen, ist aber auch ein wichtiger Bestandteil der optischen Kommunikation von Mobiltelefonen.5. Lichtsensor: Der Lichtsensor wird hauptsächlich in Mobiltelefonen zur Umgebungslichterkennung, Näherungserkennung und Gestenerkennung verwendet und ist auch ein wichtiges optisches Kommunikationsprodukt für Mobiltelefone.Man kann sagen, dass optische Kommunikationsprodukte alle Aspekte unseres Lebens und unserer Arbeit ausfüllen. Die Produktions- und Nutzungsumgebung optischer Kommunikationsprodukte ist jedoch häufig veränderlich, z. B. bei hohen oder niedrigen Temperaturen bei Arbeiten im Freien, oder bei längerer Verwendung kommt es auch zu Veränderungen der Wärmeausdehnung und -kontraktion. Wie gelingt der zuverlässige Einsatz dieser Produkte? Hier muss unser heutiger Protagonist erwähnt werden: die Schnelltemperatur-Testkammer, in der optischen Kommunikationsbranche auch als TC-Box bekannt. Um sicherzustellen, dass optische Kommunikationsprodukte unter verschiedenen Umgebungsbedingungen weiterhin normal funktionieren, ist es notwendig, schnelle Temperaturwechseltests an optischen Kommunikationsprodukten durchzuführen. Die Testkammer für schnelle Temperaturänderungen kann eine Vielzahl unterschiedlicher Temperatur- und Feuchtigkeitsumgebungen simulieren und innerhalb eines schnellen Bereichs sofortige extreme Umweltveränderungen in der realen Welt simulieren. Wie wird die Testkammer für schnelle Temperaturänderungen in der optischen Kommunikationsbranche eingesetzt?1. Leistungstest des optischen Moduls: Das optische Modul ist eine Schlüsselkomponente der optischen Kommunikation, z. B. optischer Transceiver, optischer Verstärker, optischer Schalter usw. Die Testkammer für schnelle Temperaturänderungen kann verschiedene Temperaturumgebungen simulieren und die Leistung des optischen Moduls testen verschiedenen Temperaturen, um seine Anpassungsfähigkeit und Zuverlässigkeit zu bewerten.2. Zuverlässigkeitstest optischer Geräte: Zu den optischen Geräten gehören optische Fasern, optische Sensoren, Gitter, photonische Kristalle, Fotodioden usw. Die Testkammer für schnelle Temperaturänderungen kann die Temperaturänderung dieser optischen Geräte testen und ihre Zuverlässigkeit und Lebensdauer basierend darauf bewerten Testergebnisse.3. Simulationstest für optische Kommunikationssysteme: Die Testkammer für schnelle Temperaturänderungen kann verschiedene Umgebungsbedingungen im optischen Kommunikationssystem simulieren, wie z. B. Temperatur, Luftfeuchtigkeit, Vibration usw., um die Leistung, Zuverlässigkeit und Stabilität des gesamten Systems zu testen.4. Technologieforschung und -entwicklung: Die optische Kommunikationsbranche ist eine technologieintensive Branche, die ständig neue Technologien und neue Produkte entwickeln muss. Die Testkammer für schnelle Temperaturwechsel kann zum Testen der Leistung und Zuverlässigkeit neuer Produkte verwendet werden und trägt so dazu bei, die Entwicklung und Vermarktung neuer Produkte zu beschleunigen.Zusammenfassend lässt sich feststellen, dass in der optischen Kommunikationsindustrie die Testkammer für schnelle Temperaturänderungen üblicherweise zum Testen der Leistung und Zuverlässigkeit optischer Module und optischer Geräte verwendet wird. Wenn wir dann die Testkammer für schnelle Temperaturänderungen zum Testen verwenden, erfordern verschiedene optische Kommunikationsprodukte möglicherweise unterschiedliche Standards. Im Folgenden sind die Standards für schnelle Temperaturwechseltests für einige gängige optische Kommunikationsprodukte aufgeführt:1. Optische Fasern: Gemeinsame Prüfnormen Es gibt gängige Prüfnormen für schnelle Temperaturänderungen bei optischen Fasern: IEC 61300-2-22: Die Norm definiert die Stabilitäts- und Haltbarkeitsprüfmethode von optischen Faserkomponenten, wobei Abschnitt 4.3 die thermischen Eigenschaften spezifiziert Stabilitätstestverfahren für optische Faserkomponenten, bei schnellen Temperaturänderungen an den optischen Faserkomponenten zur Messung und Auswertung. GR-326-CORE: Dieser Standard spezifiziert Zuverlässigkeitstestanforderungen für Glasfaser-Steckverbinder und -Adapter, einschließlich thermischer Stabilitätstests zur Beurteilung der Zuverlässigkeit von Glasfaser-Steckverbindern und -Adaptern in Umgebungen mit wechselnden Temperaturen. GR-468-CORE: Dieser Standard definiert die Leistungsspezifikationen und Testmethoden für Glasfasersteckverbinder, einschließlich Temperaturzyklustests, beschleunigter Alterungstests usw., um die Zuverlässigkeit und Stabilität von Glasfasersteckverbindern unter verschiedenen Umgebungsbedingungen zu überprüfen. ASTM F2181: Diese Norm definiert eine Methode zur Faserausfallprüfung unter Umgebungsbedingungen mit hohen Temperaturen und hoher Luftfeuchtigkeit, um die Langzeitbeständigkeit der Faser zu bewerten. Und die oben genannten Standards wie GB/T 2423.22-2012 werden auf die Zuverlässigkeit von Glasfasern bei schnellen Temperaturänderungen oder langfristigen Umgebungen mit hohen Temperaturen und hoher Luftfeuchtigkeit getestet und bewertet, was den meisten Herstellern dabei helfen kann, die Qualität und Zuverlässigkeit sicherzustellen von Glasfaserprodukten.2. Photoelektrischer Wandler/optisches Modul: Die gängigen Standards für schnelle Temperaturwechseltests sind GB/T 2423.22-2012, GR-468-CORE, EIA/TIA-455-14 und IEEE 802.3. Diese Standards decken hauptsächlich die Testmethoden und spezifischen Implementierungsschritte von fotoelektrischen Wandlern/optischen Modulen ab, die die Leistung und Zuverlässigkeit von Produkten in unterschiedlichen Temperaturumgebungen sicherstellen können. Darunter ist der GR-468-CORE-Standard speziell für die Zuverlässigkeitsanforderungen optischer Wandler und optischer Module, einschließlich Temperaturzyklustests, Nasswärmetests und anderer Umwelttests, die erfordern, dass optische Wandler und optische Module über lange Zeit eine stabile und zuverlässige Leistung aufrechterhalten -Befristete Nutzung.3. Optischer Sensor: Die gängigen Standards für schnelle Temperaturwechseltests sind GB/T 27726-2011, IEC 61300-2-43 und IEC 61300-2-6. Diese Standards decken hauptsächlich die Testmethoden und spezifischen Implementierungsschritte des Temperaturänderungstests des optischen Sensors ab, die die Leistung und Zuverlässigkeit des Produkts in unterschiedlichen Temperaturumgebungen sicherstellen können. Darunter ist der Standard GB/T 27726-2011 der Standard für die Leistungstestmethode optischer Sensoren in China, einschließlich der Umwelttestmethode optischer Fasersensoren, die erfordert, dass der optische Sensor in einer Vielzahl von Arbeitsumgebungen eine stabile Leistung aufrechterhält . Die Norm IEC 60749-15 ist die internationale Norm für den Temperaturzyklustest elektronischer Komponenten und hat auch einen Referenzwert für den schnellen Temperaturwechseltest optischer Sensoren.4. Laser: Gängige Standards für schnelle Temperaturwechseltests sind GB/T 2423.22-2012 „Umwelttest für elektrische und elektronische Produkte Teil 2: Test Nr.: Temperaturzyklustest“, GB/T 2423.38-2002 „Grundlegende Testmethoden für elektrische Komponenten Teil 38“. : Temperaturbeständigkeitstest (IEC 60068-2-2), GB/T 13979-2009 „Laserprodukt-Leistungstestmethode“, IEC 60825-1, IEC/TR 61282-10 und andere Normen decken hauptsächlich die Lasertemperaturänderungstestmethode ab Spezifische Implementierungsschritte können die Leistung und Zuverlässigkeit von Produkten in verschiedenen Temperaturumgebungen sicherstellen. Darunter ist der Standard GB/T 13979-2009 der Standard für die Leistungstestmethode von Laserprodukten in China, einschließlich der Umwelttestmethode Laser unter Temperaturschwankungen, was eine stabile Leistung des Lasers in einer Vielzahl von Arbeitsumgebungen erfordert. Die Norm IEC 60825-1 ist eine Spezifikation für die Integrität von Laserprodukten, und es gibt auch relevante Bestimmungen für den schnellen Temperaturwechseltest von Lasern. Darüber hinaus ist die Norm IEC/TR 61282-10 eine der Richtlinien für den Entwurf von Glasfaserkommunikationssystemen, die Methoden zum Schutz der Laser vor der Umgebung umfasst.5. Optischer Controller: Die gängigen Teststandards für schnelle Temperaturänderungen sind GR-1209-CORE und GR-1221-CORE. GR-1209-CORE ist ein Zuverlässigkeitsstandard für Glasfasergeräte, hauptsächlich für den Zuverlässigkeitstest optischer Verbindungen, und spezifiziert das Zuverlässigkeitsexperiment optischer Verbindungssysteme. Darunter ist der Rapid Temperature Cycle (FTC) eines der Testprojekte, mit dem die Zuverlässigkeit von Glasfasermodulen unter sich schnell ändernden Temperaturbedingungen getestet werden soll. Während des Tests muss der optische Controller Temperaturzyklen im Bereich von -40 °C bis 85 °C durchführen. Während des Temperaturzyklus sollte das Modul seine normale Funktion beibehalten und keine abnormale Ausgabe erzeugen, und die Testzeit beträgt 100 Temperaturzyklen . GR-1221-CORE ist ein Zuverlässigkeitsstandard für passive Glasfasergeräte und eignet sich zum Testen passiver Geräte. Darunter ist der Temperaturzyklustest einer der Prüfpunkte, bei dem auch der optische Controller im Bereich von -40 °C bis 85 °C geprüft werden muss und die Prüfzeit 100 Zyklen beträgt. Beide Standards spezifizieren den Zuverlässigkeitstest des optischen Controllers in einer Umgebung mit Temperaturänderungen, der die Stabilität und Zuverlässigkeit des optischen Controllers unter rauen Umgebungsbedingungen bestimmen kann.Im Allgemeinen können sich verschiedene Standards für schnelle Temperaturwechseltests auf unterschiedliche Testparameter und Testmethoden konzentrieren. Es wird empfohlen, die entsprechenden Teststandards entsprechend der Verwendung bestimmter Produkte auszuwählen.Wenn wir kürzlich die Zuverlässigkeitsüberprüfung optischer Module diskutieren, gibt es einen widersprüchlichen Indikator: Die Anzahl der Temperaturzyklen bei der Überprüfung optischer Module beträgt 10 Mal, 20 Mal, 100 Mal oder sogar 500 Mal.Frequenzdefinitionen in zwei Industriestandards:Die Verweise auf diese Standards haben eindeutige Quellen und sind korrekt.Für das optische 5G-Vorwärtsmodul gehen wir davon aus, dass die Anzahl der Zyklen 500 beträgt und die Temperatur auf -40 °C ~85 °C eingestellt istDas Folgende ist die Beschreibung des 10/20/100/500 oben im Originaltext von GR-468 (2004).Aufgrund des begrenzten Platzes wird in diesem Artikel die Verwendung einer Testkammer für schnelle Temperaturänderungen in der optischen Kommunikationsindustrie vorgestellt. Wenn Sie Fragen zur Verwendung von Testkammern für schnelle Temperaturwechsel und anderen Umwelttestgeräten haben, können Sie diese gerne mit uns besprechen und gemeinsam lernen.
    Mehr lesen
  • IEC 60068-2 IEC 60068-2
    Sep 26, 2024
    IEC 60068-2 Anweisungen:IEC (International Electrotechnical Association) ist die weltweit älteste nichtstaatliche internationale Organisation für elektrische Normung, die für den Lebensunterhalt der Menschen mit elektronischen Produkten relevante Testspezifikationen und -methoden entwickelt, wie zum Beispiel: Mainframe-Boards, Notebooks, Tablets, Smartphones, LCD-Bildschirme, Spielekonsolen... Der Hauptgedanke seines Tests ist eine Weiterentwicklung von IEC, dessen Hauptvertreter IEC60068-2 ist. Umgebungstestbedingungen. Sein [Umwelttest] bezieht sich auf die Probe, die natürlichen und künstlichen Umgebungen ausgesetzt ist, aber auf die Leistung seiner Die tatsächlichen Nutzungs-, Transport- und Lagerbedingungen werden bewertet. Der Umwelttest der Probe kann durch die Verwendung standardisierter Standards einheitlich und linear erfolgen. Durch Umwelttests kann simuliert werden, ob sich das Produkt in verschiedenen Phasen (Lagerung, Transport, Verwendung) an Umweltveränderungen (Temperatur, Feuchtigkeit, Vibration, Temperaturwechsel, Temperaturschock, Salznebel, Staub) anpassen kann. Und stellen Sie sicher, dass die Eigenschaften und die Qualität des Produkts selbst dadurch nicht beeinträchtigt werden. Niedrige Temperaturen, hohe Temperaturen und Temperatureinwirkungen können mechanische Belastungen erzeugen. Diese Belastungen machen die Testprobe empfindlicher gegenüber nachfolgenden Tests, Stöße und Vibrationen können mechanische Belastungen erzeugen Stress, dieser Stress kann dazu führen, dass die Probe sofort beschädigt wird, Luftdruck, wechselnde feuchte Hitze, konstante feuchte Hitze, Korrosion. Die Anwendung dieser Tests kann zu fortgesetzten thermischen und mechanischen Stresstesteffekten führen.Wichtiger Austausch von IEC-Spezifikationen:IEC69968-2-1 – KaltTestzweck: Testen der Fähigkeit von Automobilkomponenten, -geräten oder anderen Komponentenprodukten, bei niedrigen Temperaturen zu funktionieren und zu lagern.Testmethoden werden unterteilt in:1.Aa: Methode der plötzlichen Temperaturänderung für nicht-thermische Proben2.Ab: Temperaturgradientenmethode für nicht-thermische Proben3.Ad: Temperaturgradientenmethode für thermogene ProbenNotiz:Aa:1. Statischer Test (ohne Stromversorgung).2. Kühlen Sie zunächst auf die in der Spezifikation angegebene Temperatur ab, bevor Sie das Testteil platzieren.3. Nach der Stabilität darf der Temperaturunterschied an jedem Punkt der Probe ±3℃ nicht überschreiten.4. Nach Abschluss des Tests wird die Probe unter normalen atmosphärischen Druck gesetzt, bis der Nebel vollständig entfernt ist. Während des Übertragungsvorgangs wird keine Spannung an die Probe angelegt.5. Messen Sie, nachdem Sie den ursprünglichen Zustand wiederhergestellt haben (mindestens 1 Stunde).Ab:1. Statischer Test (ohne Stromversorgung).2. Die Probe wird bei Raumtemperatur in den Schrank gestellt und die Temperaturänderung der Schranktemperatur überschreitet nicht 1℃ pro Minute.3. Die Probe muss nach dem Test im Schrank aufbewahrt werden, und die Temperaturänderung der Schranktemperatur darf 1℃ pro Minute nicht überschreiten, um zum normalen atmosphärischen Druck zurückzukehren; Während der Temperaturänderung sollte die Probe nicht aufgeladen werden.4. Messen Sie, nachdem Sie den ursprünglichen Zustand wiederhergestellt haben (mindestens 1 Stunde). (Der Unterschied zwischen der Temperatur und der Lufttemperatur beträgt mehr als 5℃).Ac:1. Dynamischer Test (plus Stromversorgung): Wenn die Temperatur der Probe nach dem Laden stabil ist, ist die Temperatur der Probenoberfläche der heißeste Punkt.2. Die Probe wird bei Raumtemperatur in den Schrank gestellt und die Temperaturänderung der Schranktemperatur überschreitet nicht 1℃ pro Minute.3. Die Probe sollte nach dem Test im Schrank aufbewahrt werden, und die Temperaturänderung des Schranks sollte 1 °C pro Minute nicht überschreiten und auf den normalen Atmosphärendruck zurückkehren. Während der Temperaturänderung sollte die Probe nicht aufgeladen werden.4. Messen Sie, nachdem Sie den ursprünglichen Zustand wiederhergestellt haben (mindestens 1 Stunde).Testbedingungen:1. Temperatur: -65,-55,-40,-25,-10,-5,+5°C2. Aufenthaltszeit: 2/16/72/96 Stunden.3. Temperaturschwankungsrate: nicht mehr als 1℃ pro Minute.4. Toleranzfehler: +3°C.Testaufbau:1. Wärmeerzeugende Proben sollten in der Mitte des Prüfschranks und mit einem Abstand von > 15 cm zur Schrankwand platziert werdenProbe zu Probe > 15 cm Verhältnis Testschrank zu Testvolumen > 5:1.2. Bei wärmeerzeugenden Proben sollte bei Verwendung von Luftkonvektion die Strömungsgeschwindigkeit auf ein Minimum beschränkt werden.3. Die Probe sollte ausgepackt sein und die Vorrichtung sollte die Eigenschaften einer hohen Wärmeleitung aufweisen. IEC 60068-2-2 – Trockene HitzeTestzweck: Testen der Fähigkeit von Komponenten, Geräten oder anderen Komponentenprodukten, in Umgebungen mit hohen Temperaturen betrieben und gelagert zu werden.Die Testmethode ist:1. Ba: Methode der plötzlichen Temperaturänderung für nicht-thermische Proben2.Bb: Temperaturgradientenmethode für nicht-thermische Proben3.Bc: Methode mit plötzlichen Temperaturänderungen für thermogene Proben4.Bd: Temperaturgradientenmethode für thermogene ProbenNotiz:Ba:1. Statischer Test (ohne Stromversorgung).2. Kühlen Sie zunächst auf die in der Spezifikation angegebene Temperatur ab, bevor Sie das Testteil platzieren.3. Nach der Stabilität darf der Temperaturunterschied an jedem Punkt der Probe +5 °C nicht überschreiten.4. Nachdem der Test abgeschlossen ist, stellen Sie die Probe unter normalen atmosphärischen Druck und bringen Sie sie in den ursprünglichen Zustand zurück (mindestens 1 Stunde).Bb:1. Statischer Test (ohne Stromversorgung).2. Die Probe wird bei Raumtemperatur in den Schrank gestellt, und die Temperaturänderung der Schranktemperatur überschreitet nicht 1℃ pro Minute, und die Temperatur wird auf den in der Spezifikation angegebenen Temperaturwert gesenkt.3. Die Probe muss nach dem Test im Schrank aufbewahrt werden, und die Temperaturänderung der Schranktemperatur darf 1℃ pro Minute nicht überschreiten, um zum normalen atmosphärischen Druck zurückzukehren; Während der Temperaturänderung sollte die Probe nicht aufgeladen werden.4. Messen Sie, nachdem Sie den ursprünglichen Zustand wiederhergestellt haben (mindestens 1 Stunde).Chr.:1. Dynamischer Test (externe Stromversorgung) Wenn die Temperatur der Probe nach dem Laden stabil ist, beträgt der Unterschied zwischen der Temperatur der heißesten Stelle auf der Oberfläche der Probe und der Lufttemperatur mehr als 5℃.2. Erhitzen Sie es auf die in der Spezifikation angegebene Temperatur, bevor Sie das Testteil platzieren.3. Nach der Stabilität darf der Temperaturunterschied an jedem Punkt der Probe +5 °C nicht überschreiten.4. Nach Abschluss des Tests wird die Probe unter den normalen atmosphärischen Druck gebracht und die Messung wird durchgeführt, nachdem der ursprüngliche Zustand wiederhergestellt ist (mindestens 1 Stunde).5. Die durchschnittliche Temperatur des Dezimalpunkts in der Ebene von 0 bis 50 mm auf der Unterseite der Probe.Bd:1. Dynamischer Test (externe Stromversorgung): Wenn die Temperatur der Probe nach dem Laden stabil ist, weicht die Temperatur der heißesten Stelle auf der Oberfläche der Probe um mehr als 5 °C von der Lufttemperatur ab.2. Die Probe wird bei Raumtemperatur in den Schrank gestellt, und die Temperaturänderung der Schranktemperatur überschreitet nicht 1℃ pro Minute und steigt auf den angegebenen Temperaturwert.3. Rückkehr zum normalen atmosphärischen Druck; Während der Temperaturänderung sollte die Probe nicht aufgeladen werden.4. Messen Sie, nachdem Sie den ursprünglichen Zustand wiederhergestellt haben (mindestens 1 Stunde).Testbedingungen:1. Die Temperatur 1000.800.630.500.400.315.250.200.175.155.125.100.85.70.55.40.30 ℃.1. Aufenthaltszeit: 2/16/72/96 Stunden.2. Temperaturschwankungsrate: nicht mehr als 1℃ pro Minute. (Durchschnitt in 5 Minuten)3. Toleranzfehler: Toleranz von ±2℃ unter 200℃. (200~1000℃ Toleranz ±2%) IEC 60068-2-2- Testmethode Ca: Konstante feuchte Hitze1. Testzweck:Der Zweck dieser Prüfmethode besteht darin, die Anpassungsfähigkeit von Komponenten, Geräten oder anderen Produkten an den Betrieb und die Lagerung bei konstanter Temperatur und hoher relativer Luftfeuchtigkeit zu bestimmen.Schritt 2: UmfangDiese Prüfmethode kann sowohl auf wärmeableitende als auch auf nicht wärmeableitende Proben angewendet werden.3. Keine Grenzen4. Testschritte:4.1 Die Proben müssen vor der Prüfung visuell, elektrisch und mechanisch gemäß den einschlägigen Spezifikationen geprüft werden.4.2 Der Prüfling ist entsprechend den einschlägigen Vorgaben in den Prüfschrank einzulegen. Um die Bildung von Wassertropfen auf dem Prüfling nach dem Einlegen in den Schrank zu vermeiden, ist es am besten, die Temperatur des Prüflings vorab auf die Temperaturbedingungen im Prüfschrank vorzuwärmen.4.3 Der Prüfling ist entsprechend dem vorgegebenen Wohnort zu isolieren.4.4 Sofern in den entsprechenden Spezifikationen festgelegt, müssen Funktionstests und Messungen während oder nach dem Test durchgeführt werden, und die Funktionstests müssen in Übereinstimmung mit dem in den Spezifikationen geforderten Zyklus durchgeführt werden, und die Teststücke dürfen nicht aus dem Test entfernt werden Kabinett.4.5 Nach der Prüfung muss der Prüfling mindestens eine Stunde und höchstens zwei Stunden lang normalen atmosphärischen Bedingungen ausgesetzt werden, um in seinen ursprünglichen Zustand zurückzukehren. Abhängig von den Eigenschaften der Probe oder der unterschiedlichen Laborenergie kann die Probe entnommen oder im Prüfschrank aufbewahrt werden, um auf die Erholung zu warten. Wenn Sie die Zeit für die Entnahme so kurz wie möglich halten möchten, vorzugsweise nicht mehr als fünf Minuten, Bei Aufbewahrung im Schrank muss die Luftfeuchtigkeit innerhalb von 30 Minuten auf 73 % bis 77 % relative Luftfeuchtigkeit gesenkt werden, während die Temperatur ebenfalls innerhalb von 30 Minuten die Labortemperatur im +1℃-Bereich erreichen muss.5. Testbedingungen5.1 Prüftemperatur: Die Temperatur im Prüfschrank sollte im Bereich von 40+2°C geregelt werden.5.2 Relative Luftfeuchtigkeit: Die Luftfeuchtigkeit im Prüfschrank sollte auf 93 (+2/-3) % relative Luftfeuchtigkeit geregelt werden. Innerhalb des Bereichs.5.3 Aufenthaltszeit: Die Aufenthaltszeit kann 4 Tage, 10 Tage, 21 Tage oder 56 Tage betragen.5.4 Testtoleranz: Die Temperaturtoleranz beträgt +2℃, Fehler bei der Messung des Paketinhalts, langsame Temperaturänderung und Temperaturunterschied im Temperaturschrank. Um jedoch die Aufrechterhaltung der Luftfeuchtigkeit in einem bestimmten Bereich zu erleichtern, sollte die Temperatur an zwei beliebigen Punkten im Prüfschrank zu jedem Zeitpunkt möglichst innerhalb des Mindestbereichs gehalten werden. Bei einem Temperaturunterschied von mehr als 1 °C verändert sich die Luftfeuchtigkeit über den zulässigen Bereich hinaus. Daher müssen möglicherweise auch kurzfristige Temperaturänderungen auf 1 °C begrenzt werden.6. Testaufbau6.1 Im Prüfschrank müssen Temperatur- und Feuchtigkeitssensoren installiert werden, um die Temperatur und Luftfeuchtigkeit im Schrank zu überwachen.6.2 Es dürfen keine Kondenswassertropfen auf dem Prüfling an der Oberseite oder an der Wand des Prüfschranks vorhanden sein.6.3 Das im Prüfschrank befindliche Kondenswasser muss kontinuierlich abgeführt werden und darf nicht wieder verwendet werden, sofern es nicht gereinigt (nachgereinigt) wird.6.4 Wenn die Luftfeuchtigkeit im Prüfschrank durch Einsprühen von Wasser in den Prüfschrank erreicht wird, darf der Feuchtigkeitswiderstandskoeffizient nicht weniger als 500 Ω betragen.7. Sonstiges7.1 Die Temperatur- und Feuchtigkeitsbedingungen im Prüfschrank müssen gleichmäßig und denen in der Umgebung des Temperatur- und Feuchtigkeitssensors ähnlich sein.7.2 Die Temperatur- und Feuchtigkeitsbedingungen im Prüfschrank dürfen während des Einschaltens oder der Funktionsprüfung des Prüflings nicht verändert werden.7.3 Die beim Entfernen von Feuchtigkeit von der Probenoberfläche zu treffenden Vorsichtsmaßnahmen müssen in den entsprechenden Spezifikationen detailliert beschrieben werden. IEC 68-2-14 Testmethode N: Temperaturschwankung1. TestzweckDer Zweck dieser Testmethode besteht darin, die Auswirkung der Probe auf die Umgebung von Temperaturänderungen oder kontinuierlichen Temperaturänderungen zu bestimmen.Schritt 2: UmfangDiese Testmethode kann unterteilt werden in:Testmethode Na: Schnelle Temperaturänderung innerhalb einer festgelegten ZeitPrüfmethode Nb: Temperaturänderung bei spezifizierter TemperaturschwankungTestmethode Nc: Schnelle Temperaturänderung durch doppeltes Eintauchen in die Flüssigkeit.Die ersten beiden Punkte gelten für Komponenten, Geräte oder andere Produkte und der dritte Punkt gilt für Glas-Metall-Dichtungen und ähnliche Produkte.Schritt 3 LimitDiese Testmethode validiert keine Umwelteinflüsse bei hohen oder niedrigen Temperaturen. Wenn solche Bedingungen validiert werden sollen, verwenden Sie „IEC68-2-1-Testmethode A: „Kälte““ oder „IEC 60068-2-2-Testmethode B: trockene Hitze“. verwendet werden sollte.4. Testablauf4.1 Prüfmethode Na:Schnelle Temperaturänderung in einer bestimmten Zeit4.1.1 Die Proben müssen vor der Prüfung visuell, elektrisch und mechanisch gemäß den einschlägigen Spezifikationen geprüft werden.4.1.2 Der Probentyp muss ausgepackt, stromlos und einsatzbereit sein oder andere in den relevanten Spezifikationen angegebene Bedingungen erfüllen. Der Ausgangszustand der Probe war Raumtemperatur im Labor.4.1.3 Passen Sie die Temperatur der beiden Temperaturschränke jeweils an die angegebenen Hoch- und Tieftemperaturbedingungen an.4.1.4 Legen Sie die Probe in den Tieftemperaturschrank und halten Sie sie entsprechend der angegebenen Verweilzeit warm.4.1.5 Die Probe in den Hochtemperaturschrank bringen und entsprechend der angegebenen Verweilzeit warm halten.4.1.6 Die Übergangszeit von hoher und niedriger Temperatur richtet sich nach den Prüfbedingungen.4.1.7 Wiederholen Sie den Vorgang der Schritte 4.1.4 und 4.1.5 viermal4.1.8 Nach dem Test sollte die Probe normalen atmosphärischen Bedingungen ausgesetzt und für eine bestimmte Zeit aufbewahrt werden, damit die Probe Temperaturstabilität erreicht. Die Reaktionszeit richtet sich nach den einschlägigen Vorschriften.4.1.9 Nach der Prüfung sind die Prüflinge optisch, elektrisch und mechanisch gemäß den einschlägigen Spezifikationen zu prüfen.4.2 Prüfmethode Hinweis:Temperaturänderung bei einer bestimmten Temperaturschwankung4.2.1 Die Proben sind vor der Prüfung gemäß den einschlägigen Spezifikationen visuell, elektrisch und mechanisch zu prüfen.4.2.2 Legen Sie den Prüfling in den Temperaturschrank. Die Form des Prüfstücks sollte ausgepackt, stromlos und einsatzbereit sein oder andere in den relevanten Spezifikationen angegebene Bedingungen erfüllen. Der Ausgangszustand der Probe war Raumtemperatur im Labor.Die Probe kann betriebsbereit gemacht werden, wenn die entsprechende Spezifikation dies erfordert.4.2.3 Die Temperatur des Schranks muss auf den vorgeschriebenen Tieftemperaturzustand abgesenkt werden und die Isolierung muss gemäß der vorgeschriebenen Verweilzeit durchgeführt werden4.2.4 Die Temperatur des Schranks muss auf den angegebenen Hochtemperaturzustand erhöht werden und die Wärmespeicherung muss entsprechend der angegebenen Verweilzeit durchgeführt werden4.2.5 Die Temperaturschwankungen bei hoher und niedriger Temperatur müssen von den Prüfbedingungen abhängen.4.2.6 Wiederholen Sie den Vorgang in den Schritten 4.2.3 und 4.2.4:Während der Prüfung sind elektrische und mechanische Prüfungen durchzuführen.Notieren Sie die Zeit, die für elektrische und mechanische Tests aufgewendet wird.Nach dem Test sollte die Probe normalen atmosphärischen Bedingungen ausgesetzt und für eine bestimmte Zeit aufbewahrt werden, damit die Probe die in den entsprechenden Spezifikationen angegebene Temperaturstabilitäts-Erholungszeit erreicht.Nach der Prüfung sind die Prüflinge entsprechend den einschlägigen Vorgaben optisch, elektrisch und mechanisch zu prüfen5. TestbedingungenDie Testbedingungen können anhand der folgenden geeigneten Temperaturbedingungen und Testzeiten oder gemäß den relevanten Spezifikationen ausgewählt werden:5.1 Prüfmethode Na:Schnelle Temperaturänderung in einer bestimmten ZeitHohe Temperatur: 1000800630500400315250200175155125100,85,70,55,4030 ° CNiedrige Temperatur: -65,-55,-40,-25.-10.-5 °CLuftfeuchtigkeit: Der Dampfgehalt pro Kubikmeter Luft sollte weniger als 20 Gramm betragen (entspricht 50 % relativer Luftfeuchtigkeit bei 35 °C).Verweilzeit: Die Temperierzeit des Temperaturschrankes kann 3 Stunden, 2 Stunden, 1 Stunde, 30 Minuten oder 10 Minuten betragen, bei fehlender Vorkehrung wird sie auf 3 Stunden eingestellt. Nachdem das Prüfstück in den Temperaturschrank gelegt wurde, darf die Temperaturanpassungszeit ein Zehntel der Verweilzeit nicht überschreiten. Übertragungszeit: manuell 2–3 Minuten, automatisch weniger als 30 Sekunden, kleine Probe weniger als 10 Sekunden.Anzahl der Zyklen: 5 Zyklen.Testtoleranz: Die Toleranz der Temperatur unter 200℃ beträgt +2℃Die Temperaturtoleranz zwischen 250 und 1000 °C beträgt +2 % der Prüftemperatur. Wenn die Größe des Temperaturschranks die oben genannten Toleranzanforderungen nicht erfüllen kann, kann die Toleranz gelockert werden: Die Toleranz der Temperatur unter 100 °C beträgt ±3 °C und die Toleranz der Temperatur zwischen 100 und 200 °C beträgt ±5 °C (die Toleranzrelaxation sollte im Bericht angegeben werden).5.2 Prüfmethode Hinweis:Temperaturänderung bei einer bestimmten TemperaturschwankungHohe Temperatur: 1000800630500400315250200175155125100,85,70 55403 0 'CNiedrige Temperatur: -65, -55, -40, -25, -10, -5,5℃Luftfeuchtigkeit: Dampf pro Kubikmeter Luft sollte weniger als 20 Gramm betragen (entspricht 50 % relativer Luftfeuchtigkeit bei 35 °C). Verweilzeit: einschließlich Steig- und Abkühlzeit kann 3 Stunden, 2 Stunden, 1 Stunde, 30 Minuten oder 10 Minuten betragen , wenn keine Bereitstellung vorhanden ist, auf 3 Stunden einstellen.Temperaturschwankung: Die durchschnittliche Temperaturschwankung des Temperaturschranks innerhalb von 5 Minuten beträgt 1+0,2 °C/min, 3+0,6 °C/min oder 5+1 °C/min.Anzahl der Zyklen: 2 Zyklen.Testtoleranz: Die Temperaturtoleranz unter 200℃ beträgt +2℃.Die Toleranz der Temperatur zwischen 250 und 1000 °C beträgt +2 % der Prüftemperatur. Wenn die Größe des Temperaturschranks die oben genannten Toleranzanforderungen nicht erfüllen kann, kann die Toleranz gelockert werden. Die Toleranz der Temperatur unter 100 °C beträgt +3 °C. Die Temperatur zwischen 100 °C und 200 °C beträgt +5 °C. (Die Toleranzentspannung sollte im Bericht angegeben werden).6. Testaufbau6.1 Prüfmethode Na:Schnelle Temperaturänderung in einer bestimmten ZeitDer Unterschied zwischen der Innenwandtemperatur der Hoch- und Tieftemperaturschränke und den Temperaturtestspezifikationen darf 3 % bzw. 8 % (in °K) nicht überschreiten, um Probleme mit der Wärmestrahlung zu vermeiden.Die thermogene Probe sollte so weit wie möglich in der Mitte des Prüfschranks platziert werden, und der Abstand zwischen der Probe und der Schrankwand, der Probe und der Probe sollte größer als 10 cm sein und das Verhältnis des Volumens zur Temperatur sollte größer sein zwischen Schrank und Probe sollte größer als 5:1 sein.6.2 Prüfmethode Hinweis:Temperaturänderung bei einer bestimmten TemperaturschwankungVor der Prüfung müssen die Proben gemäß den einschlägigen Spezifikationen visuell, elektrisch und mechanisch geprüft werden.Die Probe muss sich im ausgepackten, nicht mit Strom versorgten und gebrauchsbereiten Zustand oder in einem anderen in den relevanten Spezifikationen angegebenen Zustand befinden. Der Ausgangszustand der Probe war Raumtemperatur im Labor.Passen Sie die Temperatur der beiden Temperaturschränke jeweils an die angegebenen Hoch- und Tieftemperaturbedingungen anDie Probe wird in einen Tieftemperaturschrank gestellt und entsprechend der angegebenen Verweilzeit warm gehaltenDie Probe wird in einen Hochtemperaturschrank gestellt und entsprechend der angegebenen Verweilzeit isoliert.Die Übertragungszeit von hoher und niedriger Temperatur muss entsprechend den Testbedingungen durchgeführt werden.Wiederholen Sie den Vorgang der Schritte d und e viermal.Nach dem Test sollte die Probe normalen atmosphärischen Bedingungen ausgesetzt und für eine bestimmte Zeit aufbewahrt werden, damit die Probe die in den entsprechenden Spezifikationen angegebene Temperaturstabilitäts-Erholungszeit erreicht.Nach der Prüfung sind die Prüflinge entsprechend den einschlägigen Vorgaben optisch, elektrisch und mechanisch zu prüfen6.3 Prüfmethode NC:Schnelle Temperaturänderung bei der Methode des doppelten Einweichens von FlüssigkeitenDie im Test verwendete Flüssigkeit muss mit der Probe kompatibel sein und darf die Probe nicht beschädigen.7. Andere7.1 Prüfmethode Na:Schnelle Temperaturänderung in einer bestimmten ZeitBeim Einlegen der Probe in den Temperaturschrank müssen Temperatur und Luftdurchsatz im Schrank innerhalb eines Zehntels der Haltezeit die vorgegebene Temperaturspezifikation und -toleranz erreichen.Die Luft im Schrank muss kreisförmig gehalten werden und die Luftströmungsgeschwindigkeit in der Nähe der Probe darf nicht weniger als 2 Meter pro Sekunde (2 m/s) betragen.Wenn die Probe aus dem Hoch- oder Tieftemperaturschrank transferiert wird, kann die Haltezeit aus irgendeinem Grund nicht abgeschlossen werden, sie bleibt im vorherigen Haltezustand (vorzugsweise bei niedriger Temperatur).7.2 Prüfmethode Hinweis:Die Luft im Schrank muss in einem Kreis mit einer bestimmten Temperaturschwankung gehalten werden und die Luftströmungsgeschwindigkeit in der Nähe der Probe darf nicht weniger als 2 Meter pro Sekunde (2 m/s) betragen.7.3 Prüfmethode NC:Schnelle Temperaturänderung bei der Methode des doppelten Einweichens von FlüssigkeitenWenn die Probe in die Flüssigkeit eingetaucht ist, kann sie schnell zwischen den beiden Behältern transportiert werden und die Flüssigkeit kann nicht gerührt werden. 
    Mehr lesen
  • Was sind die explosionsgeschützten Geräte für hohe und niedrige Temperaturen? Was sind die explosionsgeschützten Geräte für hohe und niedrige Temperaturen?
    Sep 26, 2024
    Was sind die explosionsgeschützten Geräte für hohe und niedrige Temperaturen?Aufgrund der Besonderheit des Testprodukts kann das Testprodukt während des Testvorgangs eine große Menge Gas produzieren im Hochtemperatur- oder Hochdruckzustand, die Feuer fangen und explodieren können. Um die Produktionssicherheit zu gewährleisten, können als optionale Ausstattung vorbeugende Sicherheitsschutzeinrichtungen eingesetzt werden. Daher ist die Prüfkammer für hohe und niedrige Temperaturen Beim Testen dieser Spezialprodukte müssen spezielle Geräte hinzugefügt werden - explosionsgeschützte Geräte. Lassen Sie uns heute darüber sprechen, welche explosionsgeschützten Geräte für hohe und niedrige Temperaturen geeignet sind.1. DruckentlastungsanschlussWenn die in der Prüfkammer erzeugte Luft zunimmt und der Gasdruck in der Kammer einen Schwellenwert erreicht, öffnet sich die Druckentlastungsöffnung automatisch und lässt den Druck nach außen ab. Diese Konstruktion stellt sicher, dass bei Überdruck im System der Druck abgebaut werden kann und so ein Zusammenbrechen oder Explodieren des Systems verhindert wird. Die Lage und Anzahl der Druckentlastungsanschlüsse werden entsprechend der spezifischen Konstruktion und den Anwendungsanforderungen des Feuerlöschsystems bestimmt.2. RauchmelderDer Rauchmelder realisiert den Brandschutz hauptsächlich durch die Überwachung der Rauchkonzentration. Der ionische Rauchsensor wird im Inneren des Rauchmelders eingesetzt. Der ionische Rauchsensor ist eine Art Sensor mit fortschrittlicher Technologie und stabilem und zuverlässigem Betrieb. Wenn die Konzentration der Rauchpartikel in der Kammer den Schwellenwert übersteigt, wird ein Alarm ausgelöst, um die Produktion daran zu erinnern, den Betrieb einzustellen und einen Brand zu verhindern.3. GasdetektorEin Gasdetektor ist ein Instrument, das die Konzentration eines Gases erkennt. Das Instrument eignet sich für gefährliche Orte, an denen brennbare oder giftige Gase vorhanden sind, und kann den Gehalt des gemessenen Gases in der Luft innerhalb der unteren Explosionsgrenze über einen langen Zeitraum hinweg kontinuierlich erfassen. Das Gas diffundiert durch die Rückseite des porösen Films in die Arbeitselektrode des Sensors, wo das Gas oxidiert oder reduziert wird. Diese elektrochemische Reaktion führt zu einer Änderung des Stroms, der durch den externen Stromkreis fließt, und die Gaskonzentration kann durch Messung der Stromstärke gemessen werden.4. RauchabzugssystemDer Lufteinlass des Druckventilators ist direkt mit der Außenluft verbunden. Um eine Belastung der Außenluft durch Rauch zu vermeiden, sollte der Lufteinlass des Zuluftventilators nicht auf gleicher Höhe mit dem Luftauslass der Absaugmaschine liegen. Am Auslass- oder Einlassluftrohr des Ventilators sollte ein Einweg-Luftventil installiert werden. Das mechanische Rauchabzugssystem verwendet einen Rauchabzugsventilator für die mechanische Abluft. Relevanten Informationen zufolge kann ein gut konzipiertes mechanisches Rauchabzugssystem 80 % der Hitze im Brandfall abführen, so dass die Temperatur am Brandort stark gesenkt wird, und es spielt eine wichtige Rolle bei der Sicherheit bei der Evakuierung von Personen und bei Bränden Kampf.5. Elektromagnetisches Schloss und mechanische TürschnalleDas elektromagnetische Schloss nutzt das elektromagnetische Prinzip, um die Befestigung des Schlosskörpers zu erreichen, ohne dass eine mechanische Schlosszunge verwendet werden muss. Daher besteht beim elektromagnetischen Schloss nicht die Möglichkeit einer Beschädigung oder gewaltsamen Zerstörung der mechanischen Schlosszunge. Das elektromagnetische Schloss verfügt über eine hohe Schlagfestigkeit. Wenn die äußere Aufprallkraft auf den Schlosskörper einwirkt, wird der Schlosskörper nicht leicht zerstört und es werden bestimmte Schutzmaßnahmen ergriffen, wenn es zu einer Explosion kommt.6. Automatisches FeuerlöschgerätDas automatische Feuerlöschgerät besteht hauptsächlich aus vier Teilen: Detektor (Wärmeenergiemelder, Flammenmelder, Rauchmelder), Feuerlöscher (Kohlendioxidlöscher), digitaler Temperaturkontrollalarm und Kommunikationsmodul. Durch das digitale Kommunikationsmodul im Gerät können Temperaturänderungen, Alarmstatus und Feuerlöscherinformationen im Brandbereich in Echtzeit fernüberwacht und gesteuert werden, wodurch nicht nur die verschiedenen Zustände des automatischen Feuerlöschgeräts fernüberwacht werden können, sondern auch Beherrschen Sie außerdem die Echtzeitveränderungen im Brandgebiet, wodurch der Verlust von Menschenleben und Sachwerten im Brandfall minimiert werden kann.7. Kontroll- und WarnleuchteKommunizieren Sie den Anlagen- oder Übertragungsstatus durch visuelle und akustische Signale an Maschinenbediener, Techniker, Produktionsleiter und Anlagenpersonal. 
    Mehr lesen
1 2
Insgesamt 2Seiten

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns