Banner
Heim

Prüfkammer für Umweltzuverlässigkeit

Prüfkammer für Umweltzuverlässigkeit

  • IEEE1513-Temperaturzyklustest, Feuchtigkeits-Gefriertest und thermischer Feuchtigkeitstest 1 IEEE1513-Temperaturzyklustest, Feuchtigkeits-Gefriertest und thermischer Feuchtigkeitstest 1
    Oct 07, 2024
    IEEE1513-Temperaturzyklustest, Feuchtigkeits-Gefriertest und thermischer Feuchtigkeitstest 1Zu den Prüfanforderungen für die Umweltzuverlässigkeit von Zellen, Empfängern und Modulen konzentrierter Solarzellen gehören eigene Prüfmethoden und Prüfbedingungen im Temperaturzyklustest, im Feuchtigkeits-Gefriertest und im Wärme-Feuchtigkeits-Test, und es gibt auch Unterschiede in der Qualitätsbestätigung danach der Test. Daher enthält IEEE1513 in der Spezifikation drei Tests zum Temperaturzyklustest, zum Feuchtigkeitsgefriertest und zum thermischen Feuchtigkeitstest, und die Unterschiede und Testmethoden werden für jedermann als Referenz erläutert.Referenzquelle: IEEE Std 1513-2001IEEE1513-5.7 Wärmezyklustest IEEE1513-5.7 WärmezyklustestZiel: Feststellung, ob das Empfangsende dem durch den Unterschied in der Wärmeausdehnung zwischen den Teilen und dem Verbindungsmaterial, insbesondere der Lötverbindung und der Gehäusequalität, verursachten Ausfall ordnungsgemäß standhalten kann. Hintergrund: Temperaturwechseltests konzentrierter Solarzellen zeigen Schweißermüdung von Kupferkühlkörpern und erfordern eine vollständige Ultraschallübertragung, um Risswachstum in den Zellen zu erkennen (SAND92-0958 [B5]).Die Rissausbreitung ist eine Funktion der Temperaturzykluszahl, der anfänglichen vollständigen Lötverbindung, des Lötverbindungstyps zwischen der Batterie und dem Kühler aufgrund des Wärmeausdehnungskoeffizienten und der Temperaturzyklusparameter, nach dem Wärmezyklustest zur Überprüfung der Empfängerstruktur des Qualität der Verpackung und des Isoliermaterials. Für das Programm gibt es zwei Testpläne, die wie folgt getestet werden:Programm A und Programm BVerfahren A: Testen Sie den Widerstand des Empfängers bei thermischer Belastung, die durch Unterschiede in der thermischen Ausdehnung verursacht wirdVerfahren B: Temperaturzyklus vor dem FeuchtigkeitsgefriertestVor der Vorbehandlung wird betont, dass die anfänglichen Mängel des Empfangsmaterials durch tatsächliches Nassgefrieren verursacht werden. Zur Anpassung an unterschiedliche konzentrierte Solarenergiedesigns können Temperaturzyklustests von Programm A und Programm B überprüft werden, die in Tabelle 1 und Tabelle 2 aufgeführt sind.1. Diese Empfänger sind mit Solarzellen ausgestattet, die direkt mit Kupferstrahlern verbunden sind. Die erforderlichen Bedingungen sind in der Tabelle in der ersten Zeile aufgeführt2. Dadurch wird sichergestellt, dass potenzielle Fehlermechanismen entdeckt werden, die zu Fehlern im Entwicklungsprozess führen können. Diese Konstruktionen nutzen unterschiedliche Methoden und können alternative Bedingungen verwenden, wie in der Tabelle gezeigt, um den Kühler der Batterie zu lösen.Tabelle 3 zeigt, dass der Empfangsteil vor der Alternative einen Temperaturzyklus des Programms B durchführt.Da Programm B auf der Empfängerseite hauptsächlich andere Materialien testet, werden zu allen Designs Alternativen angebotenTabelle 1 – Temperaturzyklus-Verfahrenstest für EmpfängerProgramm A – ThermozyklusOptionMaximale TemperaturGesamtzahl der ZyklenBewerbung aktuellErforderliches DesignTCR-A110℃250NoDie Batterie ist direkt mit dem Kupferkühler verschweißtTCR-B90℃500NoAndere DesignaufzeichnungenTCR-C90℃250I(angewandt) = IscAndere DesignaufzeichnungenTabelle 2 – Temperaturzyklus-Verfahrenstest des EmpfängersVerfahren B – Temperaturzyklus vor dem NassgefriertestOptionMaximale TemperaturGesamtzahl der ZyklenBewerbung aktuellErforderliches DesignHFR-A 110℃100NoDokumentation aller Entwürfe HFR-B 90℃200NoDokumentation aller Entwürfe HFR-C 90℃100I(angewandt) = IscDokumentation aller Entwürfe Verfahren: Das Empfangsende wird einem Temperaturzyklus zwischen -40 °C und der Maximaltemperatur ausgesetzt (gemäß dem Testverfahren in Tabelle 1 und Tabelle 2). Der Zyklustest kann in einer oder zwei Boxen durchgeführt werden Gas-Temperaturschock-Prüfkammer, sollte der Flüssigkeitsschockzyklus nicht verwendet werden, die Verweilzeit beträgt mindestens 10 Minuten und die hohe und niedrige Temperatur sollte innerhalb der Anforderungen von ±5 °C liegen. Die Zyklusfrequenz sollte nicht mehr als 24 Zyklen pro Tag und nicht weniger als 4 Zyklen pro Tag betragen, die empfohlene Häufigkeit beträgt 18 Mal pro Tag.Die Anzahl der thermischen Zyklen und die für die beiden Proben erforderliche Höchsttemperatur finden Sie in Tabelle 3 (Verfahren B in Abbildung 1). Anschließend werden eine Sichtprüfung und ein Test der elektrischen Eigenschaften durchgeführt (siehe 5.1 und 5.2). Diese Proben werden einem Nassgefriertest gemäß 5.8 unterzogen, und ein größerer Empfänger wird sich auf 4.1.1 beziehen (dieses Verfahren ist in Abbildung 2 dargestellt).Hintergrund: Der Zweck des Temperaturzyklustests besteht darin, den Test zu beschleunigen, der im kurzfristigen Fehlermechanismus auftritt, bevor ein Hardwarefehler bei konzentrierender Solarenergie erkannt wird. Daher beinhaltet der Test die Möglichkeit, einen großen Temperaturunterschied über das Modul hinaus zu erkennen Die Obergrenze des Temperaturzyklus von 60 °C richtet sich nach der Erweichungstemperatur vieler Modul-Acryllinsen, bei anderen Bauformen nach der Temperatur des Moduls. Die Obergrenze des Temperaturzyklus liegt bei 90 °C (siehe Tabelle 3)Tabelle 3 – Liste der Testbedingungen für ModultemperaturzyklenVerfahren B Temperaturzyklus-Vorbehandlung vor dem NassgefriertestOptionMaximale TemperaturGesamtzahl der ZyklenBewerbung aktuellErforderliches DesignTCM-A 90℃50NoDokumentation aller Entwürfe TEM-B 60℃200NoMöglicherweise ist ein Kunststoff-Linsenmoduldesign erforderlich  
    Mehr lesen

eine Nachricht hinterlassen

eine Nachricht hinterlassen
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.
Einreichen

Heim

PRODUKTE

WhatsApp

Kontaktieren Sie uns