Testspezifikation des LCD-Displays LCD-Display, vollständiger Name von Liquid Crystal Display, ist eine Flachdisplay-Technologie. Es verwendet hauptsächlich Flüssigkristallmaterialien, um die Lichtdurchlässigkeit und -blockierung zu steuern und so die Anzeige von Bildern zu erreichen. Die Struktur des LCD umfasst normalerweise zwei parallele Glassubstrate mit einem Flüssigkristallkasten in der Mitte, und das polarisierte Licht jedes Pixels wird durch die Rotationsrichtung der Flüssigkristallmoleküle durch die Spannung gesteuert, um den Zweck zu erreichen Bildgebung. LCD-Displays werden häufig in Fernsehgeräten, Computermonitoren, Mobiltelefonen, Tablet-Computern und anderen Geräten verwendet. Derzeit sind die gängigen Flüssigkristallanzeigegeräte Twisted Nematic (TN), Super Twisted Nematic (Super Twisted Nematic), STN), DSTN (Double Layer TN) und Farb-Dünnschichttransistoren (TFT). Die ersten drei Arten der Herstellung sind die gleichen Grundprinzipien und werden zu Passivmatrix-Flüssigkristallen, während TFT aufgrund der Beibehaltung des Speichers komplexer wird und als Aktivmatrix-Flüssigkristalle bezeichnet wird. Da die Flüssigkristallanzeige die Vorteile von geringem Platzbedarf, dünner Paneldicke, geringem Gewicht, flacher rechtwinkliger Anzeige, geringem Stromverbrauch, keiner elektromagnetischen Strahlung und keiner Wärmestrahlung bietet, ersetzt sie nach und nach den herkömmlichen CRT-Bildröhrenmonitor.LCD-Displays verfügen grundsätzlich über vier Anzeigemodi: Reflexion, Reflexionstransmissionsumwandlung, Projektion, Transmission.(1) Die Flüssigkristallanzeige vom Reflexionstyp selbst sendet kein Licht durch die Lichtquelle im Raum in das LCD-Panel aus und reflektiert das Licht dann über ihre reflektierende Platte in die Augen der Menschen.(2) Der Reflexionstransmissionsumwandlungstyp kann als Reflexionstyp verwendet werden, wenn die Lichtquelle im Raum ausreicht, und die Lichtquelle im Raum wird als Beleuchtung verwendet, wenn das Licht nicht ausreicht;(3) Der Projektionstyp besteht darin, das Prinzip einer ähnlichen Filmwiedergabe zu verwenden und die projizierte Lichtabteilung zu verwenden, um das von der Flüssigkristallanzeige angezeigte Bild auf den entfernten größeren Bildschirm zu projizieren.(4) Die Flüssigkristallanzeige vom Transmissionstyp nutzt die verborgene Lichtquelle vollständig als Beleuchtung.Relevante Testbedingungen: ArtikelTemperaturZeitAndereHochtemperaturlagerung60℃, 30 % relative Luftfeuchtigkeit120 StundenHinweis 1 Lagerung bei niedriger Temperatur-20℃120 StundenHinweis 1 Hohe Temperatur und hohe Luftfeuchtigkeit40℃, 95 % relative Luftfeuchtigkeit (nichtinvasiv)120 StundenHinweis 1Hochtemperaturbetrieb40℃, 30 % relative Luftfeuchtigkeit.120 Std.StandardspannungTemperaturschock-20℃(30min)↓25℃(10min)↓20℃(30min)↓25℃(10min)10 ZyklenHinweis 1Mechanische Vibration——Frequenz: 5–500 Hz, Beschleunigung: 1,0 g, Amplitude: 1,0 mm, Dauer: 15 Minuten, zweimal in X-, Y- und Z-Richtung.ArtikelTemperaturZeitAndereHinweis 1: Das getestete Modul sollte vor dem Test eine Stunde lang bei normaler Temperatur (15 ~ 35 °C, 45 ~ 65 % relative Luftfeuchtigkeit) aufgestellt werden
Anweisungen:Frühe Temperaturzyklustests Schauen Sie sich nur die Lufttemperatur des Testofens an. Gemäß den Anforderungen einschlägiger internationaler Normen bezieht sich die Temperaturschwankung des Temperaturzyklustests derzeit nicht auf die Lufttemperatur, sondern auf die Oberflächentemperatur des zu prüfenden Produkts (z. B. beträgt die Lufttemperaturschwankung des Prüfofens 15°). Die tatsächliche Temperaturschwankung, die auf der Oberfläche des zu prüfenden Produkts gemessen wird, beträgt jedoch möglicherweise nur 10 bis 11 °C/min.) und die Temperaturschwankung, die ansteigt und abkühlt, erfordert auch Symmetrie, Wiederholbarkeit (der Anstieg und (Die Kühlwellenform jedes Zyklus ist gleich) und linear (die Temperaturänderung und die Kühlgeschwindigkeit verschiedener Lasten sind gleich). Darüber hinaus stellen bleifreie Lötverbindungen und die Bewertung der Teilelebensdauer in fortschrittlichen Halbleiterherstellungsprozessen auch viele Anforderungen an Temperaturzyklustests und Temperaturschocks, sodass ihre Bedeutung ersichtlich ist (z. B.: JEDEC-22A-104F-2020, IPC9701A-2006). , MIL-883K-2016). Die relevanten internationalen Spezifikationen für Elektrofahrzeuge und Automobilelektronik, deren Haupttest auch auf dem Temperaturzyklustest der Produktoberfläche basiert (z. B.: S016750, AEC-0100, LV124, GMW3172). Spezifikation für die zu prüfenden Oberflächentemperaturzyklus-Kontrollanforderungen des Produkts:1. Je kleiner der Unterschied zwischen der Probenoberflächentemperatur und der Lufttemperatur ist, desto besser.2. Anstieg und Abfall des Temperaturzyklus müssen über der Temperatur liegen (den eingestellten Wert überschreiten, aber nicht die in der Spezifikation geforderte Obergrenze überschreiten).3. Die Oberfläche der Probe wird in kürzester Zeit eingetaucht. Zeit (Einweichzeit unterscheidet sich von Verweilzeit). Die thermische Belastungsprüfmaschine (TSC) von LAB COMPANION im Temperaturzyklustest der zu prüfenden Produktoberflächentemperierung verfügt über:1. Sie können [Lufttemperatur] oder [Temperaturregelung des zu testenden Produkts] wählen, um den Anforderungen verschiedener Spezifikationen gerecht zu werden.2. Die Temperaturänderungsrate kann [gleiche Temperatur] oder [Durchschnittstemperatur] ausgewählt werden, was den Anforderungen verschiedener Spezifikationen entspricht.3. Die Abweichung der Temperaturvariabilität zwischen Heizen und Kühlen kann separat eingestellt werden.4. Die Übertemperaturabweichung kann so eingestellt werden, dass sie den Anforderungen der Spezifikation entspricht.5.[Temperaturzyklus] und [Temperaturschock] können als Tischtemperaturregelung ausgewählt werden. IPC-Anforderungen für den Temperaturzyklustest von Produkten:PCB-Anforderungen: Die maximale Temperatur des Temperaturzyklus sollte 25 °C niedriger sein als der Glasübergangspunkttemperaturwert (Tg) der Leiterplatte.PCBA-Anforderungen: Die Temperaturschwankung beträgt 15°C/min. Anforderungen an Lot:1. Wenn der Temperaturzyklus unter -20 °C oder über 110 °C liegt oder die beiden oben genannten Bedingungen gleichzeitig vorliegen, kann es zu mehr als einem Schadensmechanismus an der Lötverbindung kommen. Diese Mechanismen neigen dazu, sich gegenseitig zu beschleunigen, was zu einem frühen Versagen führt.2. Bei langsamen Temperaturänderungen sollte der Unterschied zwischen der Probentemperatur und der Lufttemperatur im Testbereich innerhalb weniger Grad liegen. Anforderungen an die Fahrzeugvorschriften: Gemäß AECQ-104 wird TC3 (40 °C←→+125 °C) oder TC4 (-55 °C←→+125 °C) entsprechend der Umgebung des Motorraums des Fahrzeugs verwendet.
Wenn Sie an unseren Produkten interessiert sind und weitere Einzelheiten erfahren möchten, hinterlassen Sie bitte hier eine Nachricht. Wir werden Ihnen so schnell wie möglich antworten.